Implicaciones éticas de la identificación del potencial atlético infantil mediante pruebas genéticas
Palabras clave:
Análisis ético, rendimiento atlético, niño talentoso, marcadores genéticos, polimorfismo genéticoResumen
Introducción: La irrupción de la investigación genética en la esfera del deporte ha permitido la localización en el genoma de un considerable número de genes implicados en el rendimiento deportivo y, con ello, el desarrollo de tecnologías genéticas orientadas a la identificación del potencial atlético en niños, cuya aplicación, dada su relativa juventud, debe ser sometida al escrutinio de la comunidad científica desde el prisma de la ética.
Objetivo: Evaluar, desde una perspectiva ética, el uso de tecnologías genéticas en la identificación del potencial atlético en niños.
Material y métodos: Para la elaboración de la presente revisión, además de la consulta de publicaciones no seriadas, se efectuó una pesquisa en la base de datos Scopus.
Resultados: En la actualidad se conocen más de 200 marcadores genéticos relacionados con la predisposición para la aptitud física y al menos 120 vinculados directamente con el rendimiento atlético de élite, información que ha sido utilizada por numerosas compañías para desarrollar los llamados Tests Directos al Consumidor, que pretenden identificar el potencial atlético en niños a partir de su genotipo, sin necesidad de consultar a un especialista.
Conclusiones: El uso de tecnologías genéticas en la determinación del potencial atlético en niños no solo viola el espíritu del deporte, sino que también tiene el potencial de causar efectos nocivos en el individuo a nivel psicológico y social; razones por las que es éticamente inadmisible su uso en futuros atletas.
Descargas
Citas
1. Venter C, Adams MK, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The Sequence of the Human Genome. Science [Internet]. 2001 [cited: 22/11/2018];291(5507):1304-51. Available from: http://dx.doi.org/10.1126/science.1058040
2. Macnamara BN, Hambrick DZ, Oswald FL. Deliberate Practice and Performance in Music, Games, Sports, Education, and Professions: A Meta-Analysis. Psychol Sci [Internet]. 2014 [cited: 22/11/2018];25(8):1608-18. Available from: https://dx.doi.org/10.1177/0956797614535810
3. Lombardo MP, Deaner RO. You can’t teach speed: sprinters falsify the deliberate practice model of expertise. Peer J [Internet]. 2014 [cited: 22/11/2018];2:e445. Available from: http://dx.doi.org/10.7717/peerj.445
4. Sieghartsleitner R, Zuber C, Zibung M, Conzelmann A. “The Early Specialised Bird Catches the Worm!” – A Specialised Sampling Model in the Development of Football Talents. Front Psychol [Internet]. 2018 [cited: 22/11/2018];9(188):1-12. Available from: http://dx.doi.org/10.3389/fpsyg.2018.00188
5. Berovides V. La vida en la tierra y en otros mundos. ¿Estamos solos en el universo? La Habana: Editorial Academia; 2014.
6. Camporesi S, McNamee M. Bioethics, genetics and sport. New York: Routledge; 2018.
7. Bertuzzi R, Pasqua LA, Bueno S, Lima-Silva AE, Matsuda M, Marquezini M, et al. Is the COL5A1rs12722 gene polymorphism associated with running economy? PLoS ONE [Internet]. 2014 [cited: 22/11/2018];9(9):e106581. Available from: http://dx.doi.org/10.1371/journal.pone.0106581
8. Georgiades E, Klissouras V, Baulch J, Wang G, Pitsiladis Y. Why nature prevails over nurture in the making of the elite athlete. BMC Genomics [Internet]. 2017 [cited: 22/11/2018];18(Supl 8):59-66. Available from: http://dx.doi.org/10.1186/s12864-017-4190-8
9. Yu B, Chen W, Wang R, Qi Q, Li K, Zhang W, et al. Association of apolipoprotein E polymorphism with maximal oxygen uptake after exercise training: a study of Chinese young adult. Lipids Health Dis [Internet]. 2014 [cited: 22/11/2018];13:40. Available from: http://dx.doi.org/10.1186/1476-511X-13-40
10. Barreiros A, Côté J, Fonseca AM. Sobre o Desenvolvimento do Talento no Desporto: Um Contributo dos Modelos Teóricos do Desenvolvimento Desportivo. Rev Psicol Deporte [Internet]. 2013 [cited: 22/11/2018];22(2):489-94. Available from: https://www.rpd-online.com/article/view/v22-n2-barreiros-cote-fonseca/962
11. Ginevičienė V, Jakaitienė A, Pranculis A, Milašius K, Tubelis L, Utkus A. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genet [Internet]. 2014 [cited: 22/11/2018];15:58. Available from: http://dx.doi.org/10.1186/1471-2156-15-58
12. Ben-Zaken S, Meckel Y, Nemet D, Kassem E, Eliakim A. Increased Prevalence of the IL-6 174C Genetic Polymorphism in Long Distance Swimmers. J Hum Kinet [Internet]. 2017 [cited: 22/11/2018];58:121-30. Available from: http://dx.doi.org/10.1515/hukin-2017-0070
13. Loland S. Against Genetic Tests for Athletic Talent: The Primacy of the Phenotype. Sports Med [Internet]. 2015 [cited: 22/11/2018];45(9):1229-33. Available from: http://dx.doi.org/10.1007/s40279-015-0352-5
14. Rees T, Hardy L, Güllich A, Abernethy B, Côté J, Woodman T, et al. The Great British Medalists Project A Review of Current Knowledge on the Development of the World’s Best Sporting Talent. Sports Med [Internet]. 2016 [cited: 22/11/2018];46(8):1041-58. Available from: http://dx.doi.org/10.1007/s40279-016-0476-2
15. Szelid Z, Lux A, Kolossváry M, Tóth A, Vágó H, Lendvai Z, et al. Right Ventricular Adaptation Is Associated with the Glu298Asp Variant of the NOS3 Gene in Elite Athletes. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(10):e0141680. Available from: http://dx.doi.org/10.1371/journal.pone.0141680
16. Steinbacher P, Feichtinger RG, Kedenko L, Kedenko I, Reinhardt S, Schönauer AL, et al. The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(14):e0123881. Available from: http://dx.doi.org/10.1371/journal. pone.0123881
17. Petr M, S, Štástný P, Pecha O, Šteffl M, Šeda O, et al. PPARA Intron Polymorphism Associated with Power Performance in 30-s Anaerobic Wingate Test. PLoS ONE [Internet]. 2014 [cited: 22/11/2018];9(9):e107171. Available from: http://dx.doi.org/10.1371/journal.pone.0107171
18. Fedotovskaya ON, Mustafina LJ, Popov DV, Vinogradova OL, Ahmetov II. A common polymorphism of the MCT1 gene and athletic performance. Int J Sports Physiol Perform [Internet]. 2014 [cited: 22/11/2018];9(1):173-80. Available from: http://dx.doi.org/10.1123/IJSPP.2013-0026
19. Suppiah HT, Low Y, Chia M. Detecting and developing youth athlete potential: different strokes for different folks are warranted. Br J Sports Med [Internet]. 2015 [cited: 22/11/2018];49(13):878-82. Available from: http://dx.doi.org/10.1136/bjsports-2015-094648
20. Pokrywka A, Kaliszewski P, Majorczyk E, Zembroń-Łacny A. Genes in sport and doping. Biol Sport [Internet]. 2013 [cited: 22/11/2018];30(3):155-61. Available from: http://dx.doi.org/10.5604/20831862.1059606
21. Ahmetov II, Kulemin NA, Popov DV, Naumov VA, Akimov EB, Bravy YR, et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol Sport [Internet]. 2015 [cited: 22/11/2018];32:3-9. Available from: http://dx.doi.org/10.5604/20831862.1124568
22. Li J, Zhao Y, Li R, Broster LS, Zhou C, Yang S. Association of Oxytocin Receptor Gene (OXTR) rs53576 Polymorphism with Sociality: A Meta-Analysis. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(6):e0131820. Available from: http://dx.doi.org/10.1371/journal.pone.0131820
23. Ma F, Yang Y, Li X, Zhou F, Gao C, Li M, et al. The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One [Internet]. 2013 [cited: 22/11/2018];8:e54685. Available from: http://dx.doi.org/10.1371/journal.pone.0054685
24. Massidda M, Bachis V, Corrias L, Piras F, Scorcu M, Culigioni C, et al. ACTN3 R577X polymorphism is not associated with team sport athletic status in Italians. Sports Med - Open [Internet]. 2015 [cited: 22/11/2018];1:6. Available from: http://dx.doi.org/10.1186/s40798-015-0008-x
25. Mustafina LJ, Naumov VA, Cieszczyk P, Popov DV, Lyubaeva EV, Kostryukova ES, et al. AGTR2 gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Exp Physiol [Internet]. 2014 [cited: 22/11/2018];99(8):1042-52. Available from: http://dx.doi.org/10.1113/expphysiol.2014.079335
26. Voisin S, Cieszczyk P, Pushkarev VP, Dyatlov DA, Vashlyayev BE, Shumaylov VA, et al. EPAS1 gene variants are associated with sprint/ power athletic performance in two cohorts of European athletes. BMC Genomics [Internet]. 2014 [cited: 22/11/2018];15(382):1-11. Available from: http://dx.doi.org/10.1186/1471-2164-15-382
27. Shleptsova VA, Kulikova MA, Timofeeva MA, Shchegolkova JV, Maluchenko NV, Tonevitsky AG. Variation in neurotransmitters genes and aggression. Int J Psychophysiol [Internet]. 2008 [cited: 22/11/2018];69(3):190. Available from: http://dx.doi.org/10.1016/j.ijpsycho.2008.05.508
28. Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, et al. The Human Gene Map for Performance and Health-Related Fitness Phenotypes: The 2006–2007 Update. Med Sci Sports Exerc [Internet]. 2009 [cited: 22/11/2018];41(1):35-73. Available from: http://dx.doi.org/10.1249/MSS.0b013e3181844179
29. Ahmetov II, Fedotovskaya ON. Current Progress in Sports Genomics. En: Makowski GS, editor. Advances in Clinical Chemistry [Internet]. Amsterdam: Elsevier; 2015 [cited: 22/11/2018]. p. 247-314. Available from: https://dx.doi.org/10.1016/bs.acc.2015.03.003
30. Grealy R, Herruer J, Smith CLE, Hiller D, Haseler LJ, Griffiths LR. Evaluation of a 7-Gene Genetic Profile for Athletic Endurance Phenotype in Ironman Championship Triathletes. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(12):e0145171. Available from: http://dx.doi.org/10.1371/journal. pone.0145171
31. Lopez-Leon S, Tuvblad C, Forero DA. Sports genetics: the PPARA gene and athletes’ high ability in endurance sports. Biol Sport [Internet]. 2016 [cited: 22/11/2018];33(1):3-6. Available from: http://dx.doi.org/10.5604/20831862.1180170
32. Deschamps CL, Connors KE, Klein MS, Johnsen VL, Shearer J, Vogel HJ, et al. The ACTN3 R577X Polymorphism Is Associated with Cardiometabolic Fitness in Healthy Young Adults. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(6):e0130644. Available from: http://dx.doi.org/10.1371/journal. pone.0130644
33. Vlahovich N, Fricker PA, Brown MA, Hughes D. Ethics of genetic testing and research in sport: a position statement from the Australian Institute of Sport. Br J Sports Med [Internet]. 2017 [cited: 22/11/2018];51:5-11. Available from: http://dx.doi.org/10.1136/bjsports-2016-096661
34. Papadimitriou ID, Lucia A, Pitsiladis YP, Pushkarev VP, Dyatlov DA, Orekhov EF, et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics [Internet]. 2016 [cited: 22/11/2018];17:285. Available from: http://dx.doi.org/10.1186/s12864-016-2462-3
35. Savulescu J, Foddy B. Comment: genetic test available for sports performance. Br J Sports Med [Internet]. 2005 [cited: 22/11/2018];39:472. Available from: http://dx.doi.org/10.1136/bjsm.2005.017954
36. Karanikolou A, Wang G, Pitsiladis Y. Letter to the editor: A genetic-based algorithm for personalized resistance training. Biol Sport [Internet]. 2017 [cited: 22/11/2018];34(1):31-3. Available from: http://dx.doi.org/10.5114/biolsport.2017.63385
37. Phillips AM. Only a click away — DTC genetics for ancestry, health, love…and more: A view of the business and regulatory landscape. Appl Transl Genomics [Internet]. 2016 [cited: 22/11/2018];8:16-22. Available from: http://dx.doi.org/10.1016/j.atg.2016.01.001
38. Massidda M, Corrias L, Bachis V, Cugia P, Piras F, Scorcu M, et al. Vitamin D receptor gene polymorphisms and musculoskeletal injuries in professional football players. Exp Ther Med [Internet]. 2015 [cited: 22/11/2018];9:1974-8. Available from: http://dx.doi.org/10.3892/etm.2015.2364
39. Merchant-Borna K, Lee H, Wang D, Bogner V, Van Griensven M, Gill J, et al. Genome-Wide Changes in Peripheral Gene Expression following Sports-Related Concussion. J Neurotrauma [Internet]. 2016 [cited: 22/11/2018];33:1576-85. Available from: http://dx.doi.org/10.1089/neu.2015.4191
40. Breitbach S, Tug S, Simon P. Conventional and Genetic Talent Identification in Sports: Will Recent Developments Trace Talent?. Sports Med [Internet]. 2014 [cited: 22/11/2018];44(11):1489-503. Available from: http://dx.doi.org/10.1007/s40279-014-0221-7
41. Camporesi S. Bend it like Beckham! The ethics of genetically testing children for athletic potential. Sport Ethics Philos [Internet]. 2013 [cited: 22/11/2018];7(2):175-85. Available from: http://dx.doi.org/10.1080/17511321.2013.780183
42. Janvier A, Farlow B. Arrogance-based medicine: guidelines regarding genetic testing in children. Am J Bioeth [Internet]. 2014 [cited: 22/11/2018];14(3):15-6. Available from: http://dx.doi.org/10.1080/15265161.2013.879951
43. Vieira T. Doping Genético e Eugenia: Diálogos além do esporte. Rev Latinoam Bioét [Internet]. 2016 [cited: 22/11/2018];16(2):82-101. Available from: http://dx.doi.org/10.18359/rlbi.1816
44. Webborn N, Williams A, McNamee M, Bouchard C, Pitsiladis Y, Ahmetov I, et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. Br J Sports Med [Internet]. 2015 [cited: 22/11/2018];49:1486-91. Available from: http://dx.doi.org/10.1136/bjsports-2015-095343