Ethical implications of the identification of children´s athletic potential through genetic testing

Authors

Keywords:

Ethical analysis, athletic performance, gifted child, genetic markers, genetic polymorphism

Abstract

Introduction: The emergence of genetic research in the field of sports has allowed the location of the genome of a considerable number of genes involved in sports performance and thus, the development of genetic technologies aimed at the identification of the athletic potential in children whose application, given its relative youth, should be subject to the review of the scientific community through the prism of ethics.

Objective: To evaluate, from an ethical perspective, the use of genetic technologies in the identification of the athletic potential in children.

Materials and methods: A search in Scopus database and the consultation of non-serial publications were carried out for the development of this review.

Results: Currently, there are more than 200 genetic markers related to the predisposition for physical fitness and, at least, 120 of them are directly linked to elite athletic performance.  This information has been used by many companies to develop the so-called Direct-to-Consumer Tests, which aim to identify the athletic potential in children from their genotype, without any need to consult a specialist.

Conclusions: The use of genetic technologies in the determination of athletic potential in children not only violates the spirit of sport, but also has the potential to cause harmful effects on the individual at psychological and social levels, reasons why their use is ethically inadmissible in future athletes.

Downloads

Download data is not yet available.

References

1. Venter C, Adams MK, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The Sequence of the Human Genome. Science [Internet]. 2001 [cited: 22/11/2018];291(5507):1304-51. Available from: http://dx.doi.org/10.1126/science.1058040

2. Macnamara BN, Hambrick DZ, Oswald FL. Deliberate Practice and Performance in Music, Games, Sports, Education, and Professions: A Meta-Analysis. Psychol Sci [Internet]. 2014 [cited: 22/11/2018];25(8):1608-18. Available from: https://dx.doi.org/10.1177/0956797614535810

3. Lombardo MP, Deaner RO. You can’t teach speed: sprinters falsify the deliberate practice model of expertise. Peer J [Internet]. 2014 [cited: 22/11/2018];2:e445. Available from: http://dx.doi.org/10.7717/peerj.445

4. Sieghartsleitner R, Zuber C, Zibung M, Conzelmann A. “The Early Specialised Bird Catches the Worm!” – A Specialised Sampling Model in the Development of Football Talents. Front Psychol [Internet]. 2018 [cited: 22/11/2018];9(188):1-12. Available from: http://dx.doi.org/10.3389/fpsyg.2018.00188

5. Berovides V. La vida en la tierra y en otros mundos. ¿Estamos solos en el universo? La Habana: Editorial Academia; 2014.

6. Camporesi S, McNamee M. Bioethics, genetics and sport. New York: Routledge; 2018.

7. Bertuzzi R, Pasqua LA, Bueno S, Lima-Silva AE, Matsuda M, Marquezini M, et al. Is the COL5A1rs12722 gene polymorphism associated with running economy? PLoS ONE [Internet]. 2014 [cited: 22/11/2018];9(9):e106581. Available from: http://dx.doi.org/10.1371/journal.pone.0106581

8. Georgiades E, Klissouras V, Baulch J, Wang G, Pitsiladis Y. Why nature prevails over nurture in the making of the elite athlete. BMC Genomics [Internet]. 2017 [cited: 22/11/2018];18(Supl 8):59-66. Available from: http://dx.doi.org/10.1186/s12864-017-4190-8

9. Yu B, Chen W, Wang R, Qi Q, Li K, Zhang W, et al. Association of apolipoprotein E polymorphism with maximal oxygen uptake after exercise training: a study of Chinese young adult. Lipids Health Dis [Internet]. 2014 [cited: 22/11/2018];13:40. Available from: http://dx.doi.org/10.1186/1476-511X-13-40

10. Barreiros A, Côté J, Fonseca AM. Sobre o Desenvolvimento do Talento no Desporto: Um Contributo dos Modelos Teóricos do Desenvolvimento Desportivo. Rev Psicol Deporte [Internet]. 2013 [cited: 22/11/2018];22(2):489-94. Available from: https://www.rpd-online.com/article/view/v22-n2-barreiros-cote-fonseca/962

11. Ginevičienė V, Jakaitienė A, Pranculis A, Milašius K, Tubelis L, Utkus A. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genet [Internet]. 2014 [cited: 22/11/2018];15:58. Available from: http://dx.doi.org/10.1186/1471-2156-15-58

12. Ben-Zaken S, Meckel Y, Nemet D, Kassem E, Eliakim A. Increased Prevalence of the IL-6 174C Genetic Polymorphism in Long Distance Swimmers. J Hum Kinet [Internet]. 2017 [cited: 22/11/2018];58:121-30. Available from: http://dx.doi.org/10.1515/hukin-2017-0070

13. Loland S. Against Genetic Tests for Athletic Talent: The Primacy of the Phenotype. Sports Med [Internet]. 2015 [cited: 22/11/2018];45(9):1229-33. Available from: http://dx.doi.org/10.1007/s40279-015-0352-5

14. Rees T, Hardy L, Güllich A, Abernethy B, Côté J, Woodman T, et al. The Great British Medalists Project A Review of Current Knowledge on the Development of the World’s Best Sporting Talent. Sports Med [Internet]. 2016 [cited: 22/11/2018];46(8):1041-58. Available from: http://dx.doi.org/10.1007/s40279-016-0476-2

15. Szelid Z, Lux A, Kolossváry M, Tóth A, Vágó H, Lendvai Z, et al. Right Ventricular Adaptation Is Associated with the Glu298Asp Variant of the NOS3 Gene in Elite Athletes. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(10):e0141680. Available from: http://dx.doi.org/10.1371/journal.pone.0141680

16. Steinbacher P, Feichtinger RG, Kedenko L, Kedenko I, Reinhardt S, Schönauer AL, et al. The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(14):e0123881. Available from: http://dx.doi.org/10.1371/journal. pone.0123881

17. Petr M, S, Štástný P, Pecha O, Šteffl M, Šeda O, et al. PPARA Intron Polymorphism Associated with Power Performance in 30-s Anaerobic Wingate Test. PLoS ONE [Internet]. 2014 [cited: 22/11/2018];9(9):e107171. Available from: http://dx.doi.org/10.1371/journal.pone.0107171

18. Fedotovskaya ON, Mustafina LJ, Popov DV, Vinogradova OL, Ahmetov II. A common polymorphism of the MCT1 gene and athletic performance. Int J Sports Physiol Perform [Internet]. 2014 [cited: 22/11/2018];9(1):173-80. Available from: http://dx.doi.org/10.1123/IJSPP.2013-0026

19. Suppiah HT, Low Y, Chia M. Detecting and developing youth athlete potential: different strokes for different folks are warranted. Br J Sports Med [Internet]. 2015 [cited: 22/11/2018];49(13):878-82. Available from: http://dx.doi.org/10.1136/bjsports-2015-094648

20. Pokrywka A, Kaliszewski P, Majorczyk E, Zembroń-Łacny A. Genes in sport and doping. Biol Sport [Internet]. 2013 [cited: 22/11/2018];30(3):155-61. Available from: http://dx.doi.org/10.5604/20831862.1059606

21. Ahmetov II, Kulemin NA, Popov DV, Naumov VA, Akimov EB, Bravy YR, et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol Sport [Internet]. 2015 [cited: 22/11/2018];32:3-9. Available from: http://dx.doi.org/10.5604/20831862.1124568

22. Li J, Zhao Y, Li R, Broster LS, Zhou C, Yang S. Association of Oxytocin Receptor Gene (OXTR) rs53576 Polymorphism with Sociality: A Meta-Analysis. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(6):e0131820. Available from: http://dx.doi.org/10.1371/journal.pone.0131820

23. Ma F, Yang Y, Li X, Zhou F, Gao C, Li M, et al. The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One [Internet]. 2013 [cited: 22/11/2018];8:e54685. Available from: http://dx.doi.org/10.1371/journal.pone.0054685

24. Massidda M, Bachis V, Corrias L, Piras F, Scorcu M, Culigioni C, et al. ACTN3 R577X polymorphism is not associated with team sport athletic status in Italians. Sports Med - Open [Internet]. 2015 [cited: 22/11/2018];1:6. Available from: http://dx.doi.org/10.1186/s40798-015-0008-x

25. Mustafina LJ, Naumov VA, Cieszczyk P, Popov DV, Lyubaeva EV, Kostryukova ES, et al. AGTR2 gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Exp Physiol [Internet]. 2014 [cited: 22/11/2018];99(8):1042-52. Available from: http://dx.doi.org/10.1113/expphysiol.2014.079335

26. Voisin S, Cieszczyk P, Pushkarev VP, Dyatlov DA, Vashlyayev BE, Shumaylov VA, et al. EPAS1 gene variants are associated with sprint/ power athletic performance in two cohorts of European athletes. BMC Genomics [Internet]. 2014 [cited: 22/11/2018];15(382):1-11. Available from: http://dx.doi.org/10.1186/1471-2164-15-382

27. Shleptsova VA, Kulikova MA, Timofeeva MA, Shchegolkova JV, Maluchenko NV, Tonevitsky AG. Variation in neurotransmitters genes and aggression. Int J Psychophysiol [Internet]. 2008 [cited: 22/11/2018];69(3):190. Available from: http://dx.doi.org/10.1016/j.ijpsycho.2008.05.508

28. Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, et al. The Human Gene Map for Performance and Health-Related Fitness Phenotypes: The 2006–2007 Update. Med Sci Sports Exerc [Internet]. 2009 [cited: 22/11/2018];41(1):35-73. Available from: http://dx.doi.org/10.1249/MSS.0b013e3181844179

29. Ahmetov II, Fedotovskaya ON. Current Progress in Sports Genomics. En: Makowski GS, editor. Advances in Clinical Chemistry [Internet]. Amsterdam: Elsevier; 2015 [cited: 22/11/2018]. p. 247-314. Available from: https://dx.doi.org/10.1016/bs.acc.2015.03.003

30. Grealy R, Herruer J, Smith CLE, Hiller D, Haseler LJ, Griffiths LR. Evaluation of a 7-Gene Genetic Profile for Athletic Endurance Phenotype in Ironman Championship Triathletes. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(12):e0145171. Available from: http://dx.doi.org/10.1371/journal. pone.0145171

31. Lopez-Leon S, Tuvblad C, Forero DA. Sports genetics: the PPARA gene and athletes’ high ability in endurance sports. Biol Sport [Internet]. 2016 [cited: 22/11/2018];33(1):3-6. Available from: http://dx.doi.org/10.5604/20831862.1180170

32. Deschamps CL, Connors KE, Klein MS, Johnsen VL, Shearer J, Vogel HJ, et al. The ACTN3 R577X Polymorphism Is Associated with Cardiometabolic Fitness in Healthy Young Adults. PLoS ONE [Internet]. 2015 [cited: 22/11/2018];10(6):e0130644. Available from: http://dx.doi.org/10.1371/journal. pone.0130644

33. Vlahovich N, Fricker PA, Brown MA, Hughes D. Ethics of genetic testing and research in sport: a position statement from the Australian Institute of Sport. Br J Sports Med [Internet]. 2017 [cited: 22/11/2018];51:5-11. Available from: http://dx.doi.org/10.1136/bjsports-2016-096661

34. Papadimitriou ID, Lucia A, Pitsiladis YP, Pushkarev VP, Dyatlov DA, Orekhov EF, et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics [Internet]. 2016 [cited: 22/11/2018];17:285. Available from: http://dx.doi.org/10.1186/s12864-016-2462-3

35. Savulescu J, Foddy B. Comment: genetic test available for sports performance. Br J Sports Med [Internet]. 2005 [cited: 22/11/2018];39:472. Available from: http://dx.doi.org/10.1136/bjsm.2005.017954

36. Karanikolou A, Wang G, Pitsiladis Y. Letter to the editor: A genetic-based algorithm for personalized resistance training. Biol Sport [Internet]. 2017 [cited: 22/11/2018];34(1):31-3. Available from: http://dx.doi.org/10.5114/biolsport.2017.63385

37. Phillips AM. Only a click away — DTC genetics for ancestry, health, love…and more: A view of the business and regulatory landscape. Appl Transl Genomics [Internet]. 2016 [cited: 22/11/2018];8:16-22. Available from: http://dx.doi.org/10.1016/j.atg.2016.01.001

38. Massidda M, Corrias L, Bachis V, Cugia P, Piras F, Scorcu M, et al. Vitamin D receptor gene polymorphisms and musculoskeletal injuries in professional football players. Exp Ther Med [Internet]. 2015 [cited: 22/11/2018];9:1974-8. Available from: http://dx.doi.org/10.3892/etm.2015.2364

39. Merchant-Borna K, Lee H, Wang D, Bogner V, Van Griensven M, Gill J, et al. Genome-Wide Changes in Peripheral Gene Expression following Sports-Related Concussion. J Neurotrauma [Internet]. 2016 [cited: 22/11/2018];33:1576-85. Available from: http://dx.doi.org/10.1089/neu.2015.4191

40. Breitbach S, Tug S, Simon P. Conventional and Genetic Talent Identification in Sports: Will Recent Developments Trace Talent?. Sports Med [Internet]. 2014 [cited: 22/11/2018];44(11):1489-503. Available from: http://dx.doi.org/10.1007/s40279-014-0221-7

41. Camporesi S. Bend it like Beckham! The ethics of genetically testing children for athletic potential. Sport Ethics Philos [Internet]. 2013 [cited: 22/11/2018];7(2):175-85. Available from: http://dx.doi.org/10.1080/17511321.2013.780183

42. Janvier A, Farlow B. Arrogance-based medicine: guidelines regarding genetic testing in children. Am J Bioeth [Internet]. 2014 [cited: 22/11/2018];14(3):15-6. Available from: http://dx.doi.org/10.1080/15265161.2013.879951

43. Vieira T. Doping Genético e Eugenia: Diálogos além do esporte. Rev Latinoam Bioét [Internet]. 2016 [cited: 22/11/2018];16(2):82-101. Available from: http://dx.doi.org/10.18359/rlbi.1816

44. Webborn N, Williams A, McNamee M, Bouchard C, Pitsiladis Y, Ahmetov I, et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. Br J Sports Med [Internet]. 2015 [cited: 22/11/2018];49:1486-91. Available from: http://dx.doi.org/10.1136/bjsports-2015-095343

Published

2019-12-09

How to Cite

1.
Sancesario Pérez LA. Ethical implications of the identification of children´s athletic potential through genetic testing. Rev haban cienc méd [Internet]. 2019 Dec. 9 [cited 2025 Jun. 21];18(6):957-68. Available from: https://revhabanera.sld.cu/index.php/rhab/article/view/2582

Issue

Section

Social Sciences