Historia reproductiva y fecundidad en pacientes con proteinopatías del Sistema Nervioso

Yulemis Sánchez-Machado, Luis Enrique Almaguer Mederos

Texto completo:

XML PDF

Resumen

Introducción: Se conoce que varias proteinopatías del sistema nervioso se asocian a la ocurrencia de cambios significativos en la historia reproductiva y la fecundidad.

Objetivo: Reflejar el comportamiento de la historia reproductiva y de la fecundidad en pacientes con proteinopatías del sistema nervioso.

Material y Métodos: Se realizó una revisión bibliográfica entre los meses de enero de 2018 a diciembre de 2018. Se consultaron las bases de datos PubMed, EBSCO, Google Scholar y HighWire. Se empleó la estrategia de búsqueda avanzada para la selección de los artículos.

Desarrollo: Se identificaron evidencias de ocurrencia de cambios significativos en la historia reproductiva y la fecundidad en pacientes con proteinopatías del sistema nervioso. Mientras que las mujeres con enfermedad de Parkinson y los pacientes con Esclerosis lateral amiotrófica tienden a tener una menor fecundidad que individuos de la población general, los pacientes con la enfermedad de Huntington o con Ataxias espinocerebelosas tienden a tener una mayor fecundidad que individuos de la población general, con un importante rol para la nupcialidad. Las mujeres con enfermedad de Alzheimer tienden a presentar la menopausia a edades más tardías, mientras que las pacientes con enfermedad de Parkinson tienden a tener una menarquía más tardía y un menor número de abortos.

Conclusiones: Las evidencias disponibles con respecto a cambios significativos en la historia reproductiva y la fecundidad en pacientes con proteinopatías del sistema nervioso son frecuentemente contradictorias y se caracterizan por un énfasis en factores biológicos y la consecuente desestimación de factores de tipo socioeconómico y cultural.

Palabras claves: fecundidad, historia reproductiva, nupcialidad, proteinopatía

Palabras clave

fecundidad, historia reproductiva, nupcialidad, proteinopatía

Referencias

Scannevin RH. Therapeutic strategies for targeting neurodegenerative protein misfolding disorders. Current Opinion in Chemical Biology 2018; 44:66-74.

Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem. 2016; 124:1121-1141.

Ugalde CL, Finkelstein DI, Lawson VA, Hill AF. Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. J Neurochem. 2016; 139(2):162-180.

Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388:1545-1602.

GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018; 17: 939-53.

Couratier P, Corcia P, Lautrette G, Nicol M, Preux P-M, Marin B. Epidemiology of amyotrophic lateral sclerosis: a review of literature. Revue Neurologique 2016; 172: 37-45.

Rawlins MD, Wexler NS, Wexler AR, Tabrizi SJ, Douglas I, Evans SJW, et al. The prevalence of Huntington’s disease. Neuroepidemiology 2016; 46:144-153.

Pilotto F, Saxena S. Epidemiology of inherited cerebellar ataxias and challenges in clinical research. Clinical & Translational Neuroscience 2018: 1- 12.

Zucchella C, Sinforiani E, Citterio A, Giarracca V, Bono G, Mauri M. Reproductive life events and Alzheimer’s disease in Italian women: a retrospective study. Neuropsychiatric Disease and Treatment 2012; 8:555-560.

Nitkowska M, Czyżyk M, Friedman A. Reproductive life characteristics in females affected with Parkinson's disease and in healthy control subjects - a comparative study on Polish population. Neurol Neurochir Pol. 2014; 48(5):322-7.

Byrne S, Heverin M, Bede P, Elamin M, Hardiman O. Fecundity in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014; 15: 204-206.

Platonov FA, Tyryshkin K, Tikhonov DG, Neustroyeva TS, Sivtseva TM, Yakovleva NV. Genetic fitness and selection intensity in a population affected with high-incidence spinocerebellar ataxia type 1. Neurogenetics 2016; 17:179-185.

Shenk MK. Fertility and fecundity. The International Encyclopedia of Human Sexuality, First Edition. Edited by Patricia Whelehan and Anne Bolin. 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Bongaarts J. A framework for analyzing the proximate determinants of fertility. Population and Development Review 1978; 4(1): 105-132.

Llanio LQ. Cuba: fecundidad y toma de decisions en torno a la reproducción. Miradas en contexto. Novedades en Población 2017; 25(1):110-129.

Llanio LQ. Fecundidad y toma de decisiones en torno a la reproducción. Elementos para un marco conceptual. Novedades en Población 2018; 1(27):1-9.

Rodríguez Javiqué D, Molina Cintra MC. Fecundidad adolescente en Cuba: algunas reflexiones sobre su comportamiento por provincias y zonas de residencia. Novedades en Población 2016; 11(2):78-96.

Bundy H, Stahl D, MacCabe JH. A systematic review and meta-analysis of the fertility of patients with schizophrenia and their unaffected relatives. Acta Psychiatr Scand 2011; 123: 98-106.

Mansour H, Kandil K, WoodJ, Fathi W, Elassy M, Ibrahim I, et al. Reduced fertility and fecundity among patients with Bipolar I Disorder and Schizophrenia in Egypt. Psychiatry Investig 2011; 8:214-220.

Power RA, Kyaga S, Uher R, MacCabe JH, Langstrom N, Landen M, et al. Fecundity of patients with Schizophrenia, Autism, Bipolar Disorder, Depression, Anorexia Nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry 2013; 70(1):22-30.

Hekmatimoghaddam S, Zare-Khormizi MR, Pourrajab F. Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases. Biofactors 2017; 43(6):737-759.

Ling H. Untangling the tauopathies: Current concepts of tau pathology and neurodegeneration. Parkinsonism Relat Disord. 2018; 46 Suppl 1:S34-S38.

Ciechanover A, Kwon YT. Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci. 2017; 11:185.

Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 2017; 6:6.

Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias- from genes to potential treatments. Nat Rev Neurosci. 2017; 18(10):613-626.

Bayer TA. Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur Neuropsychopharmacol. 2015; 25(5):713-24.

Stoyas CA, La Spada AR. The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. Handb Clin Neurol. 2018; 147:143-170.

Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci. 2018; S0024-3205(18)30822-1.

Titova N, Padmakumar C, Lewis SJG, Chaudhuri KR. Parkinson’s: a syndrome rather than a disease? J Neural Transm 2017; 124:907-914.

Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci. 2017; 18(3).

Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 2018; 109:249-257.

Brown RH, Phil D, Al­Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med 2017; 377:162-72.

Cykowski MD, Powell SZ, Peterson LE, Appel JW, Rivera AL, Takei H, et al. Clinical significance of TDP-43 neuropathology in Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol. 2017; 76(5):402-413.

Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA. Global epidemiology of Amyotrophic Lateral Sclerosis: a systematic review of the published literature. Neuroepidemiology 2013; 41(2): 118-130.

Pircs K, Petri R, Madsen S, Brattås PL, Vuono R, Ottosson DR, et al. Huntingtin aggregation impairs autophagy, leading to Argonaute-2 accumulation and global microRNA dysregulation. Cell Rep. 2018; 24(6):1397-1406.

McColgan P, Tabrizi SJ. Huntington's disease: a clinical review. Eur J Neurol. 2018; 25(1):24-34.

Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018; 14(10):590-605.

Whalley L J, Carothers A D, Collyer S, DeMey R, Frackiewicz A. A study of familial factors in Alzheimer's disease. British Journal of Psychiatry 1982; 140: 249-256.

White JA, McGue M, Heston LL. Fertility and parental age in Alzheimer disease. Journal of Gerontology 1986; 41(1): 40-43.

Ptok U, Barkow K, Heun R. Fertility and number of children in patients with Alzheimer’s disease. Arch Womens Ment Health 2002; 5: 83-86.

Nelson PT, Trojanowski JQ, Abner EL, Al-Janabi OM, Jicha GA, Schmitt FA, et al. “New old pathologies”: AD, PART, and cerebral age-related TDP-43 with sclerosis (CARTS). J Neuropathol Exp Neurol 2016;75:482-98.

Abner EL, Nelson PT, Kryscio RJ, Schmitt FA, Fardo DW, Woltjer RL, et al. Diabetes is associated with cerebrovascular but not Alzheimer’s disease neuropathology. Alzheimers Dement 2016;12:882-9.

Fischer CE, Qiana W, Schweizer TA, Ismailg Z, Smith EE, Millikin CP. Determining the impact of psychosis on rates of false-positive and false-negative diagnosis in Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 2017; 3:385-392.

Martignoni E, Nappi RE, Citterio A, Calandrella D, Corengia E, Fignon A, et al. Parkinson's disease and reproductive life events. Neurol Sci. 2002; 23 Suppl 2:S85-6.

Martignoni E, Nappi RE, Citterio A, Calandrella D, Zangaglia R, Mancini F, et al. Reproductive life milestones in women with Parkinson's disease. Funct Neurol. 2003; 18(4):211-7.

Johnson WG, Lucek PR, Chatkupt S, Furman Y, Lustenberger A, Lazzarini A. Reduced fecundity in male ALS gene-carriers. American Journal of Medical Genetics 1995; 59:149-153.

Ho YS, Gargano M, Cao J, Bronson RT, Heimler I, et al. Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J Biol Chem 1998; 273: 7765-7769.

Chico L, Ienco EC, Bisordi C, Lo Gerfo A, Petrozzi L, Petrucci A, et al. Amyotrophic Lateral Sclerosis and oxidative stress: a double-blind therapeutic trial after curcumin supplementation. CNS Neurol Disord Drug Targets 2018; 17(10):767-779.

Dobrakowski M, Kaletka Z, Machoń-Grecka A, Kasperczyk S, Horak S, Birkner E, et al. The role of oxidative stress, selected metals, and parameters of the immune system in male fertility. Oxid Med Cell Longev. 2018; 2018:6249536.

Malek N, Newman EJ. Hereditary chorea -what else to consider when the Huntington's disease genetics test is negative? Acta Neurol Scand. 2017;135(1):25-33.

Reed T, Neel J. Huntington’s chorea in Michigan. American Journal of Human Genetics 1959; 11: 107-136.

Wallace D, Parker N. Huntington’s chorea in Queensland: the most recent story. Advances in Neurolgy 1973; 1:223-236.

Shokeir M. Investigation on Huntington’s disease in the Canadian Prairies. Clinical Genetics 1975; 7:349-353.

Marx R. Huntingon’s chorea in Minnesota. In: Barbeau A, Chase T, Paulson G, eds. Huntington’s chorea 1872.1972. New York: Raven Press, 1973:237-249.

Stevens D. Huntington’s chorea: a demographic, genetic and clinical study. MD thesis 1976, University of London, 1-338.

Wallace DC. The social effect of Huntington’s chorea on reproductive effectiveness. Ann Hum Genet, Lond. 1976; 39: 375-379.

Walker DA, Harper PS, Newcombe RG, Davies K. Huntington's chorea in South Wales: mutation, fertility, and genetic fitness. Journal of Medical Genetics 1983; 20: 12-17.

Mastromauro CA, Meissen GJ, Cupples LA, Kiely DK, Berkman B, Myers RH. Estimation of fertility and fitness in Huntington disease in New England. American Journal of Medical Genetics 1989; 33:248-254.

Pridmore SA, Adams GC. The fertility of HD-affected individuals in Tasmania. Australian and New Zealand Journal of Psychiatry 1991; 25:262-264.

Morrison PJ, Johnston WP, Nevin NC. The epidemiology of Huntington's disease in Northern Ireland. J Med Genet 1995; 32:524-530.

Frontali M, Sabbadini G, Novelletto A, Jodice C, Naso F, Spadaro M, et al. Genetic fitness in Huntington's disease and Spinocerebellar Ataxia 1: a population genetics model for CAG repeat expansions. Ann Hum Genet 1996; 60: 423-435.

Lima M, Smith MT, Silva C, Abade A, Mayer FM, Coutinho P. Natural selection at the MJD locus: phenotypic diversity, survival and fertility among Machado-Joseph disease patients from the Azores. J. Biosoc. Sci. 2001; 33: 361-373.

Prestes PR, Saraiva-Pereira ML, Silveira I, Sequeiros J, Jardim LB. Machado-Joseph disease enhances genetic fitness: a comparison between affected and unaffected women and between MJD and the general population. Annals of Human Genetics 2008; 72: 57-64.



Añadir comentario