Pérdida de células de Purkinje asociada con alteraciones ultraestructurales específicas en un modelo de ratón con expresión transgénica de ataxina-2 mutada
Palabras clave:
Ataxia, Ataxia Espinocerebelosa tipo-2, ataxina-2, ratones transgénicos, desórdenes poliglutamínicos, células de PurkinjeResumen
Introducción: La expresión de la proteína ataxina-2 con un dominio poliglutamínico expandido en su extremo N-terminal es la causa de la Ataxia Espinocerebelosa tipo-2, afectando primariamente a las células de Purkinje cerebelosas. El estudio morfológico de esta población neuronal expresando la ataxina-2 mutada podría brindar información sobre los mecanismos patogénicos subyacentes al proceso de enfermedad y contribuir a la identificación de potenciales dianas terapéuticas.
Objetivo: Identificar cambios en la celularidad y ultraestructura de células de Purkinje asociados a la expresión de la ataxina-2 con expansiones poliglutamínicas.
Material y Métodos: Tres grupos de ratones transgénicos (F066) de dos meses, cinco meses y 12 meses de edad expresando ataxina-2 con expansiones poliglutamínicas y un grupo de ratones salvajes de 12 meses de edad, fueron estudiados. Láminas histológicas de la capa de células de Purkinje correspondientes a cada grupo de animales fueron analizadas por microscopía convencional y electrónica.
Resultados: Consistente con estudios previos, una significativa reducción (p<0,05) en la densidad de células de Purkinje fue observada en los ratones F066 a los cinco (14,82±2,61) y 12 (13,9±0,58) meses de edad comparado con el grupo control (23,77±0,46). De manera similar, alteraciones ultraestructurales consistentes en pérdida de crestas mitocondriales, dilatación del retículo endoplasmático y del complejo de Golgi, fueron observadas en los tres grupos de animales transgénicos.
Conclusiones: La expresión transgénica de la ataxina-2 con expansiones poliglutamínicas está asociada con degeneración progresiva y con daños ultraestructurales de las células de Purkinje en el modelo F066. En consecuencia, los resultados sugieren que la ataxina-2 con expansiones poliglutamínicas podría ejercer su efecto neurotóxico a través de alteraciones funcionales del retículo endoplasmático, complejo de Golgi y mitocondrias.
Descargas
Citas
1. Paulson HL, Shakkottai VG, Clark HB. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat. Rev. Neurosci [Internet]. 2017;18(10):613–626. Available from: https://doi.org/10.1038/nrn.2017.92
2. Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol [Internet]. 2018;14(10):590-605. Available from: https://doi.org/10.1038/s41582-018-0051-6
3. Schultz JL, Moser AM, Nopoulos PC. The Association between CAG Repeat Length and Age of Onset of Juvenile-Onset Huntington’s Disease. Brain Sci [Internet]. 2020;10(9):575. Available from: https://doi.org/10.3390/brainsci10090575
4. Satterfield TF, Jackson SM, Pallanck LJ. A Drosophila Homolog of the Polyglutamine Disease Gene SCA2 Is a Dosage-Sensitive Regulator of Actin Filament Formation. Genetics [Internet]. 2002;162(4):1687-702. Available from: https://doi.org/10.1093/genetics/162.4.1687
5. Pang JT, Giunti P, Chamberlain S. Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two case. Brain [Internet]. 2002;125(Pt3):656-63. Available from: https://doi.org/10.1093/brain/awf060
6. Rüb U, Schöls L, Paulson HL. Clinical features, neurogenetics and neuropathology of the poly-glutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol [Internet]. 2013;104:38-66. Available from: https://doi.org/10.1016/j.pneurobio.2013.01.001
7. Lastres IB, Nonis D, Eich F. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. Biochim Biophys Acta [Internet]. 2016;1862(9):1558-69. Available from: https://doi.org/10.1016/j.bbadis.2016.05.017
8. Auburger GW. Spinocerebellar ataxia type 2. Handb Clin Neurol [Internet]. 2012;103:423-36. Available from: https://doi.org/10.1016/B978-0-444-51892-7.00026-7
9. Almaguer ML., Aguilera RR, González ZY. Estimation of survival in Spinocerebellar ataxia type 2 Cuban patients. Clin Genet [Internet]. 2013;83(3):293-294. Available from: https://doi.org/10.1111/j.1399-0004.2012.01902.x
10. Fittschen M, Lastres IB, Halbach MV. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenet [Internet]. 2015;16(3):181-92. Available from: https://doi.org/10.1007/s10048-015-0441-5
11. Damrath E, Heck MV, Gispert S. ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice. PLoS Genet [Internet]. 2012;8(8):e1002920. Available from: https://doi.org/10.1371/journal.pgen.1002920
12. Dansithong W, Paul S, Figueroa KP. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet [Internet]. 2015;11(14):e1005182. Available from: https://doi.org/10.1371/journal.pgen.1005182
13. Sen NE, Canet PJ, Halbach MV. Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiol Dis [Internet]. 2019;132:104559. Available from: https://doi.org/10.1016/j.nbd.2019.104559
14. Lim C, Allada R. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in drosophila. Science [Internet]. 2013;340(6134):875-9. Available from: https://doi.org/10.1126/science.1234785
15. Zhang Y, Ling J, Yuan C. A role for drosophila ATX2 in activation of PER translation and circadian behavior. Science [Internet]. 2013;340(6134):879-82. Available from: https://doi.org/10.1126/science.1234746
16. Meierhofer D, Halbach M, Sen NE. Ataxin-2 (Atxn2)-Knock-out mice show branched chain amino acids and fatty acids pathway alterations. Mol Cell Proteomics [Internet]. 2016;15(5):1728-39. Available from: https://doi.org/10.1074/mcp.M115.056770
17. Yang YS, Kato M, Wu X. Yeast Ataxin-2 Forms an Intracellular Condensate Required for the Inhibition of TORC1 Signaling during Respiratory Growth. Cell [Internet]. 2019;177(3):697-710.e17. Available from: https://doi.org/10.1016/j.cell.2019.02.043
18. Van de Loo S, Eich F, Nonis D. Ataxin-2 associates with rough endoplasmic reticulum. Exp Neurol [Internet]. 2009;215(1):110-8. Available from: https://doi.org/10.1016/j.expneurol.2008.09.020
19. Huynh DP, Yang HP, Vakharia H. Expansion of the polyQ repeat in ataxia-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Human Molecular Genetics [Internet]. 2003;12(13):1485-96. Available from: https://doi.org/10.1093/hmg/ddg175
20. Drost J, Nonis D, Eich F. Ataxin-2 modulates the levels of Grb2 and SRC but not ras signaling. Journal of Molecular Neuroscience [Internet]. 2013;51(1):68-81. Available from: https://doi.org/10.1007/s12031-012-9949-4
21. Nonis D, Schmidt MH, van de Loo S. Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. Cellular Signalling [Internet]. 2008;20(10):1725-39. Available from: https://doi.org/10.1016/j.cellsig.2008.05.018
22. Ralser M, Nonhoff U, Albrecht M. Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways. Human Molecular Genetics [Internet]. 2005;14(19):2893-909. Available from: https://doi.org/10.1093/hmg/ddi321
23. Canet PJ, Nesli ES, Aleksandar A. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis [Internet]. 2021;152:105289. Aviable from: https://doi.org/10.1016/j.nbd.2021.105289
24. Castillo U, Gnazzo MM, Turpin CG. Conserved role for Ataxin-2 in mediating endoplasmic reticulum dynamics. Traffic [Internet]. 2019;20(6):436-47. Available from: https://doi.org/10.1111/tra.12647
25. Aguiar J, Fernández J, Aguilar A. Ubiquitous expression of human SCA2 gene Ander the regulation of the SCA2 self-promoter cause specific Purkinje cell degeneration in transgenic mice. Neuroscience Letters [Internet]. 2006;392(3):202-6. Available from: https://doi.org/10.1016/j.neulet.2005.09.020
26. Spurr AR. A low-viscosity epoxy resin embed-ding medium for electron microscopy. J. Ultra-struct. Res [Internet]. 1969;26(1):31-43. Available from: https:// doi.org/10.1016/S0022-5320(69)90033-1
27. Sereno MI, Diedrichsen J, Tachrount M, et al. The human cerebellum has almost 80% of the surface area of the neocortex. Proc Natl Acad Sci U S A [Internet]. 2020;117(32):19538-19543. Available from: https://doi.org/10.1073/pnas.2002896117
28. Ilhami C, Muzaffer S, Ahmet S. Histological and histomorphometric studies on the cerebellar cortex and silver stained nucleolus organizer regions of Purkinje neurons in chronic morphine-treated rats. Veterinarski Arhiv [Internet]. 2018;8(1):75-88. Available from: https://doi.org/10.24099/vet.arhiv.160902ª
29. Huynh DP, Figueroa K, Hoang N. Nuclear localization or inclusion body formation of ataxin-2 is not necessary for SCA2 pathogenesis in mouse or human. Nat Genet [Internet]. 2000;26(1):44-50. Available from: https://doi.org/10.1038/79162
30. Turnbull VJ, Storey E, Tarlac V. Different ataxin-2 antibodies display different immunoreactive profiles. Brain Res [Internet]. 2004;1027(1-2):103–16. Available from: https://doi.org/10.1016/j.brainres.2004.08.044
31. Cornelius N, Wardman JH, Hargreaves IP. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion [Internet]. 2017;34:103-14. Available from: https://doi.org/10.1016/j.mito.2017.03.001
32. Cabral FM, Hetz C. ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship?. Curr Top Microbiol Immunol [Internet]. 2018;414:131-157. Available from: https://doi.org/10.1007/82_2017_52
33. Nakagomi S, Barsoum MJ, Wetzel BE. A Golgi fragmentation pathway in neurodegeneration. Neurobiol Dis [Internet]. 2008;29(2):221-231. Available from: https://doi.org/10.1016/j.nbd.2007.08.015
34. Valdez RC, Flock DL, Martin LJ. Endoplasmic Reticulum pathology and stress response in neurons precede programmed necrosis after neonatal hypoxia-ischemia. Int J Dev Neurosci [Internet]. 2016;48:58-70. Available from: https://doi.org/10.1016/j.ijdevneu.2015.11.007
35. Li J, Ahat E, Wang Y. Golgi Structure and Function in Health, Stress, and Diseases. Results Probl Cell Differ [Internet]. 2019;67:441-485. Available from: https://doi.org/10.1007/978-3-030-23173-6_19
36. Knott AB, Perkins G, Schwarzenbacher R. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci [Internet]. 2008;9(7):505-18. Available from: https://doi.org/10.1038/nrn2417
37. Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci [Internet]. 2018;19:63-80. Available from: https://doi.org/10.1038/nrn.2017.170
38. Rose S, Niyazov DM, Rossignol DA. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther [Internet]. 2018;22(5):571-93. Available from: https://doi.org/10.1007/s40291-018-0352-x
39. Cogliati S, Enriquez JA, Scorrano EL. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci [Internet]. 2016;41(3):261-73. Available from: https://doi.org/10.1016/j.tibs.2016.01.001
40. Maine EM, Hansen D, Springer D. Caenorhabditis elegans atx-2 promotes germline proliferation and the oocyte fate. Genetics [Internet]. 2004;168(2):817-30. Available from: https://doi.org/10.1534/genetics.104.029355
41. Vuksanovic DB, Snow K, Patterson MC. Spinocerebellar Ataxia Type 2 (SCA 2) in an InfantWith Extreme CAG Repeat Expansion. Am J Med Genet. 1998;79(5):383-7.
42. Kasumu AW, Hougaard C, Rode F. Selective Positive Modulator of Calcium-Activated Potassium Channels Exerts Beneficial Effects in a Mouse Model of Spinocerebellar Ataxia. Chem Biol [Internet]. 2012A;19(10):1340-53. Available from: https://doi.org/10.1016/j.chembiol.2012.07.013
43. Kasumu AW, Liang X, Egorova P. Chronic Suppression of Inositol 1,4,5-Triphosphate Receptor-Mediated Calcium Signaling in Cerebellar Purkinje Cells Alleviates Pathological Phenotype in Spinocerebellar Ataxia 2 Mice. J Neurosci [Internet]. 2012;32(37):12786-96. Available from: https://doi.org/10.1523/JNEUROSCI.1643-12.2012
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Habanera de Ciencias Médicas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Todo el contenido de esta revista se encuentra en Acceso Abierto, distribuido según los términos de la Licencia Creative Commons Atribución–NoComercial 4.0 que permite el uso, distribución y reproducción no comerciales y sin restricciones en cualquier medio, siempre que sea debidamente citada la fuente primaria de publicación.
