Purkinje cell loss associated with specific ultrastructural alterations in a mouse model with transgenic expression of mutated ataxin-2

Authors

Keywords:

Ataxia, Spinocerebellar Ataxia type 2, ataxin-2, transgenic mice, polyglutamine disorders, Purkinje cells

Abstract

Introduction: The expression of ataxin-2 protein with an N-terminal expanded polyglutamine domain is the cause of Spinocerebellar Ataxia type 2 (SCA2), acting primarily on cerebellar Purkinje cells. The morphological study of cerebellar Purkinje cells expressing polyglutamine-expanded ataxin-2 might provide information on the pathogenic mechanisms underlying the disease process and contribute to the identification of potential therapeutic targets.

Objective: To identify changes in the cellularity and ultrastructure of Purkinje cells associated with the expression of polyglutamine-expanded ataxin-2.

Material and Methods: Three groups of transgenic mice (F066) aged two, five, and 12 months, expressing the polyglutamine-expanded ataxin-2 and a group of 12-month-old wild type mice, were studied. Histological slides of the Purkinje cell layer were prepared from each group for conventional and electron microscopic analysis.

Results: Consistent with previous validation studies, a significant reduction (p<0.05) of Purkinje cell density was observed in F066 mice at five (14.82±2.61) and 12 (13.9±0.58) months of age relative to the control group (23.77±0.46). Similarly, ultrastructural alterations consisting of the loss of mitochondrial cristae, dilation of the rough endoplasmic reticulum and Golgi complex were observed in all three groups of transgenic animals.

Conclusions: Transgenic expression of polyQ-expanded ataxin-2 in the F066 model is associated with progressive degeneration and Purkinje cells ultrastructural damage. Consequently, these results suggest that polyglutane-expanded ataxin-2 could exert its neurotoxic effect through functional alterations of the endoplasmic reticulum, Golgi complex, and mitochondria.

Downloads

Download data is not yet available.

Author Biography

Dany Amauris Cuello Almartales, Center for Research and Rehabilitation of Hereditary Ataxias, Department of Molecular Neurobiology. Holguín.

The author declare no conflicts of interest.

References

1. Paulson HL, Shakkottai VG, Clark HB. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat. Rev. Neurosci [Internet]. 2017;18(10):613–626. Available from: https://doi.org/10.1038/nrn.2017.92

2. Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol [Internet]. 2018;14(10):590-605. Available from: https://doi.org/10.1038/s41582-018-0051-6

3. Schultz JL, Moser AM, Nopoulos PC. The Association between CAG Repeat Length and Age of Onset of Juvenile-Onset Huntington’s Disease. Brain Sci [Internet]. 2020;10(9):575. Available from: https://doi.org/10.3390/brainsci10090575

4. Satterfield TF, Jackson SM, Pallanck LJ. A Drosophila Homolog of the Polyglutamine Disease Gene SCA2 Is a Dosage-Sensitive Regulator of Actin Filament Formation. Genetics [Internet]. 2002;162(4):1687-702. Available from: https://doi.org/10.1093/genetics/162.4.1687

5. Pang JT, Giunti P, Chamberlain S. Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two case. Brain [Internet]. 2002;125(Pt3):656-63. Available from: https://doi.org/10.1093/brain/awf060

6. Rüb U, Schöls L, Paulson HL. Clinical features, neurogenetics and neuropathology of the poly-glutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol [Internet]. 2013;104:38-66. Available from: https://doi.org/10.1016/j.pneurobio.2013.01.001

7. Lastres IB, Nonis D, Eich F. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. Biochim Biophys Acta [Internet]. 2016;1862(9):1558-69. Available from: https://doi.org/10.1016/j.bbadis.2016.05.017

8. Auburger GW. Spinocerebellar ataxia type 2. Handb Clin Neurol [Internet]. 2012;103:423-36. Available from: https://doi.org/10.1016/B978-0-444-51892-7.00026-7

9. Almaguer ML., Aguilera RR, González ZY. Estimation of survival in Spinocerebellar ataxia type 2 Cuban patients. Clin Genet [Internet]. 2013;83(3):293-294. Available from: https://doi.org/10.1111/j.1399-0004.2012.01902.x

10. Fittschen M, Lastres IB, Halbach MV. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenet [Internet]. 2015;16(3):181-92. Available from: https://doi.org/10.1007/s10048-015-0441-5

11. Damrath E, Heck MV, Gispert S. ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice. PLoS Genet [Internet]. 2012;8(8):e1002920. Available from: https://doi.org/10.1371/journal.pgen.1002920

12. Dansithong W, Paul S, Figueroa KP. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet [Internet]. 2015;11(14):e1005182. Available from: https://doi.org/10.1371/journal.pgen.1005182

13. Sen NE, Canet PJ, Halbach MV. Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiol Dis [Internet]. 2019;132:104559. Available from: https://doi.org/10.1016/j.nbd.2019.104559

14. Lim C, Allada R. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in drosophila. Science [Internet]. 2013;340(6134):875-9. Available from: https://doi.org/10.1126/science.1234785

15. Zhang Y, Ling J, Yuan C. A role for drosophila ATX2 in activation of PER translation and circadian behavior. Science [Internet]. 2013;340(6134):879-82. Available from: https://doi.org/10.1126/science.1234746

16. Meierhofer D, Halbach M, Sen NE. Ataxin-2 (Atxn2)-Knock-out mice show branched chain amino acids and fatty acids pathway alterations. Mol Cell Proteomics [Internet]. 2016;15(5):1728-39. Available from: https://doi.org/10.1074/mcp.M115.056770

17. Yang YS, Kato M, Wu X. Yeast Ataxin-2 Forms an Intracellular Condensate Required for the Inhibition of TORC1 Signaling during Respiratory Growth. Cell [Internet]. 2019;177(3):697-710.e17. Available from: https://doi.org/10.1016/j.cell.2019.02.043

18. Van de Loo S, Eich F, Nonis D. Ataxin-2 associates with rough endoplasmic reticulum. Exp Neurol [Internet]. 2009;215(1):110-8. Available from: https://doi.org/10.1016/j.expneurol.2008.09.020

19. Huynh DP, Yang HP, Vakharia H. Expansion of the polyQ repeat in ataxia-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Human Molecular Genetics [Internet]. 2003;12(13):1485-96. Available from: https://doi.org/10.1093/hmg/ddg175

20. Drost J, Nonis D, Eich F. Ataxin-2 modulates the levels of Grb2 and SRC but not ras signaling. Journal of Molecular Neuroscience [Internet]. 2013;51(1):68-81. Available from: https://doi.org/10.1007/s12031-012-9949-4

21. Nonis D, Schmidt MH, van de Loo S. Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. Cellular Signalling [Internet]. 2008;20(10):1725-39. Available from: https://doi.org/10.1016/j.cellsig.2008.05.018

22. Ralser M, Nonhoff U, Albrecht M. Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways. Human Molecular Genetics [Internet]. 2005;14(19):2893-909. Available from: https://doi.org/10.1093/hmg/ddi321

23. Canet PJ, Nesli ES, Aleksandar A. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis [Internet]. 2021;152:105289. Aviable from: https://doi.org/10.1016/j.nbd.2021.105289

24. Castillo U, Gnazzo MM, Turpin CG. Conserved role for Ataxin-2 in mediating endoplasmic reticulum dynamics. Traffic [Internet]. 2019;20(6):436-47. Available from: https://doi.org/10.1111/tra.12647

25. Aguiar J, Fernández J, Aguilar A. Ubiquitous expression of human SCA2 gene Ander the regulation of the SCA2 self-promoter cause specific Purkinje cell degeneration in transgenic mice. Neuroscience Letters [Internet]. 2006;392(3):202-6. Available from: https://doi.org/10.1016/j.neulet.2005.09.020

26. Spurr AR. A low-viscosity epoxy resin embed-ding medium for electron microscopy. J. Ultra-struct. Res [Internet]. 1969;26(1):31-43. Available from: https:// doi.org/10.1016/S0022-5320(69)90033-1

27. Sereno MI, Diedrichsen J, Tachrount M, et al. The human cerebellum has almost 80% of the surface area of the neocortex. Proc Natl Acad Sci U S A [Internet]. 2020;117(32):19538-19543. Available from: https://doi.org/10.1073/pnas.2002896117

28. Ilhami C, Muzaffer S, Ahmet S. Histological and histomorphometric studies on the cerebellar cortex and silver stained nucleolus organizer regions of Purkinje neurons in chronic morphine-treated rats. Veterinarski Arhiv [Internet]. 2018;8(1):75-88. Available from: https://doi.org/10.24099/vet.arhiv.160902ª

29. Huynh DP, Figueroa K, Hoang N. Nuclear localization or inclusion body formation of ataxin-2 is not necessary for SCA2 pathogenesis in mouse or human. Nat Genet [Internet]. 2000;26(1):44-50. Available from: https://doi.org/10.1038/79162

30. Turnbull VJ, Storey E, Tarlac V. Different ataxin-2 antibodies display different immunoreactive profiles. Brain Res [Internet]. 2004;1027(1-2):103–16. Available from: https://doi.org/10.1016/j.brainres.2004.08.044

31. Cornelius N, Wardman JH, Hargreaves IP. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion [Internet]. 2017;34:103-14. Available from: https://doi.org/10.1016/j.mito.2017.03.001

32. Cabral FM, Hetz C. ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship?. Curr Top Microbiol Immunol [Internet]. 2018;414:131-157. Available from: https://doi.org/10.1007/82_2017_52

33. Nakagomi S, Barsoum MJ, Wetzel BE. A Golgi fragmentation pathway in neurodegeneration. Neurobiol Dis [Internet]. 2008;29(2):221-231. Available from: https://doi.org/10.1016/j.nbd.2007.08.015

34. Valdez RC, Flock DL, Martin LJ. Endoplasmic Reticulum pathology and stress response in neurons precede programmed necrosis after neonatal hypoxia-ischemia. Int J Dev Neurosci [Internet]. 2016;48:58-70. Available from: https://doi.org/10.1016/j.ijdevneu.2015.11.007

35. Li J, Ahat E, Wang Y. Golgi Structure and Function in Health, Stress, and Diseases. Results Probl Cell Differ [Internet]. 2019;67:441-485. Available from: https://doi.org/10.1007/978-3-030-23173-6_19

36. Knott AB, Perkins G, Schwarzenbacher R. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci [Internet]. 2008;9(7):505-18. Available from: https://doi.org/10.1038/nrn2417

37. Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci [Internet]. 2018;19:63-80. Available from: https://doi.org/10.1038/nrn.2017.170

38. Rose S, Niyazov DM, Rossignol DA. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther [Internet]. 2018;22(5):571-93. Available from: https://doi.org/10.1007/s40291-018-0352-x

39. Cogliati S, Enriquez JA, Scorrano EL. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci [Internet]. 2016;41(3):261-73. Available from: https://doi.org/10.1016/j.tibs.2016.01.001

40. Maine EM, Hansen D, Springer D. Caenorhabditis elegans atx-2 promotes germline proliferation and the oocyte fate. Genetics [Internet]. 2004;168(2):817-30. Available from: https://doi.org/10.1534/genetics.104.029355

41. Vuksanovic DB, Snow K, Patterson MC. Spinocerebellar Ataxia Type 2 (SCA 2) in an InfantWith Extreme CAG Repeat Expansion. Am J Med Genet. 1998;79(5):383-7.

42. Kasumu AW, Hougaard C, Rode F. Selective Positive Modulator of Calcium-Activated Potassium Channels Exerts Beneficial Effects in a Mouse Model of Spinocerebellar Ataxia. Chem Biol [Internet]. 2012A;19(10):1340-53. Available from: https://doi.org/10.1016/j.chembiol.2012.07.013

43. Kasumu AW, Liang X, Egorova P. Chronic Suppression of Inositol 1,4,5-Triphosphate Receptor-Mediated Calcium Signaling in Cerebellar Purkinje Cells Alleviates Pathological Phenotype in Spinocerebellar Ataxia 2 Mice. J Neurosci [Internet]. 2012;32(37):12786-96. Available from: https://doi.org/10.1523/JNEUROSCI.1643-12.2012

Downloads

Published

2025-12-21

How to Cite

1.
Cuello Almartales DA, Aguiar Santiago J, Fernández Masso JR, Falcón Cama V, Almaguer Mederos LE, Velázquez-Pérez LC. Purkinje cell loss associated with specific ultrastructural alterations in a mouse model with transgenic expression of mutated ataxin-2. Rev haban cienc méd [Internet]. 2025 Dec. 21 [cited 2026 Jan. 20];24:e5451. Available from: https://revhabanera.sld.cu/index.php/rhab/article/view/5451

Issue

Section

Biomedical Basic Sciences