Aplicaciones y efectividad de técnicas de inteligencia artificial y aprendizaje automático en la fisioterapia
Texto completo:
PDFResumen
el aprendizaje automático (ML) y la fisioterapia son ámbitos en
constante evolución y avances notables en el diagnóstico, tratamiento y
seguimiento de pacientes.
Objetivo: Esta revisión sistemática (SLR) tiene como propósito
analizar exhaustivamente la literatura científica de los últimos 5 años
para identificar los avances y enfoques tecnológicos en tendencia en
los campos de la IA y la fisioterapia, recopilando información valiosa
para especialistas.
Material y Métodos: Se aplicó la metodología PRISMA para llevar
a cabo un análisis sistemático de 94 artículos que cumplían con los
criterios de inclusión y exclusión definidos por los autores y garantizar
la evaluación de la calidad según criterios preestablecidos.
Resultados: Países desarrollados lideran la investigación en el
campo, destacando la India como un actor relevante. Se identificaron
diversas técnicas, desde algoritmos básicos hasta aprendizaje
profundo, subrayando un progreso constante. La influencia de la IA y
ML se expande desde el diagnóstico radiológico hasta la simulación
de evaluaciones clínicas; aporta beneficios tanto en la eficacia clínica
como en aspectos socioeconómicos. La tecnología impulsa terapias
personalizadas y el monitoreo remoto, transformando la práctica
fisioterapéutica.
Conclusiones: Los resultados de esta revisión tienen implicaciones
significativas para la práctica y políticas en fisioterapia, enfatizando
la necesidad de una mayor investigación en países en desarrollo y la
implementación de enfoques tecnológicos avanzados.
Palabras clave
Referencias
Chartered Society of Physiotherapy. Physiotherapy Framework: putting physiotherapybehaviours, values, knowledge & skills into practice [Internet]. Londres: Chartered Society of Physiotherapy; 2020 [Citado 02/06/2023].
Disponible en: https://www.csp.org.uk/system/files/documents/2023-10/csp_physiotherapy_framework_0.pdf
Khalid MT, Sarwar M, Farhan Sarwar M, Haroon Sarwar M. Current Role of Physiotherapy in Response to Changing Healthcare Needs of the Society. International Journal of Information and Education Technology [Internet]. 2015
[Citado 02/06/2023];1. Disponible en: http://www.aiscience.org/journal/ijeithttp://creativecommons.org/licenses/by-nc/4.0/
Aggarwal R, Ganvir S. Artificial intelligence in physiotherapy. Physiotherapy - The Journal of Indian Association of Physiotherapists. 2021;15(2):55.
D’Angelo T, Caudo D, Blandino A, Albrecht MH, Vogl TJ, Gruenewald LD, et al. Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: Current applications. Journal of Clinical Ultrasound. 2022; 60:1414-31.
Tack C. Artificial intelligence and machine learning | applications in musculoskeletal physiotherapy. Musculoskelet Sci Pract. 2019;39:164-9.
Rowe M, Nicholls DA, Shaw J. How to replace a physiotherapist: artificial intelligence and the redistribution of expertise. Physiother Theory Pract. 2022;38(13):2275-83.
Mahmoud H, Aljaldi F, El-Fiky A, Battecha K, Thabet A, Alayat M, et al. Artificial Intelligence machine learning and conventional physical therapy for upper limb outcome in patients with stroke: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci [Internet]. 2023;27(11):4812-27 [Citado 02/06/2023]. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/37318455
Alammar Z, Alzubaidi L, Zhang J, Santamaría J, Li Y, Gu Y. A Concise Review on Deep Learning for Musculoskeletal X-ray Images. En: 2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA) [Internet]. United States of America: Institute of Electrical and Electronics Engineers Inc.; 2022 [Citado 02/06/2023]. Disponible en: https://eprints.qut.edu.au/238461/
Hinterwimmer F, Consalvo S, Neumann J, Rueckert D, von Eisenhart-Rothe R, Burgkart R. Applications of machine learning for imaging-driven diagnosis of musculoskeletal malignancies—a scoping review. Eur Radiol [Internet]. 2022 [Citado 02/06/2023];32(10):7173-7184 Disponible en: https://pubmed.ncbi.nlm.nih.gov/35852574/
Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: Current status and future directions. American Journal of Roentgenology. 2019;213: 506-13.
Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial Intelligence in Musculoskeletal Imaging: Review of Current Literature, Challenges, and Trends. Semin Musculoskelet Radiol. 2019;23(3):304-11.
Gorelik N, Gyftopoulos S. Applications of Artificial Intelligence in Musculoskeletal Imaging: From the Request to the Report. Canadian Association of Radiologists Journal. 2021;72:45-59.
Fritz J, Kijowski R, Recht MP. Artificial intelligence in musculoskeletal imaging: a perspective on value propositions, clinical use, and obstacles. Skeletal Radiology [Internet]. 2022 [Citado 02/06/2023];51:239-43. Disponible en: https://doi.org/10.1007/s00256-021-03802-y
Shin Y, Yang J, Lee YH, Kim S. Artificial intelligence in musculoskeletal ultrasound imaging. Ultrasonography [Internet]. 2021 [Citado 02/06/2023];40(1):30-44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7758096/
Ekambaram D, Ponnusamy V. AI-assisted Physical Therapy for Post-injury Rehabilitation: Current State of the Art. IEIE Transactions on Smart Processing and Computing. 2023;12(3):234-42.
Ajmera P, Kharat A, Botchu R, Gupta H, Kulkarni V. Real-world analysis of artificial intelligence in musculoskeletal trauma. Journal of Clinical Orthopaedics and Trauma. 2021;22.
Laur O, Wang B. Musculoskeletal trauma and artificial intelligence: current trends and projections. Skeletal Radiology. 2022;51: 257-69.
Klontzas ME, Papadakis GZ, Marias K, Karantanas AH. Musculoskeletal trauma imaging in the era of novel molecular methods and artificial intelligence. Injury [Internet]. 2020 [Citado 02/06/2023];51(12):2748-2756.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/32972725/
Román-Belmonte JM, De La Corte-Rodríguez H, Adriana Rodríguez-Damiani B, Carlos Rodríguez-Merchán E. Artificial Intelligence in Musculoskeletal Conditions. Intechopen [Internet]. 2023 [Citado 02/06/2023];1. Disponible en: https://www.intechopen.com/chapters/86672
Konnaris MA, Brendel M, Fontana MA, Otero M, Ivashkiv LB, Wang F, et al. Computational pathology for musculoskeletal conditions using machine learning: advances, trends, and challenges. Arthritis Research and Therapy.
;24.
Li MD, Ahmed SR, Choy E, Lozano-Calderon SA, Kalpathy-Cramer J, Chang CY. Artificial intelligence applied to musculoskeletal oncology: a systematic review. Skeletal Radiology. 2022;51: 245-56.
Vogrin M, Trojner T, Kelc R. Artificial intelligence in musculoskeletal oncological radiology. Radiology and Oncology. 2020; 55:1-6.
Sardari S, Sharifzadeh S, Daneshkhah A, Nakisa B, Loke SW, Palade V, et al. Artificial Intelligence for skeleton-based physical rehabilitation action evaluation: A systematic review. Computers in Biology and Medicine. 2023;158.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021; 372.
Pérez García MB. Aplicaciones y Efectividad de Técnicas de Inteligencia Artificial y Aprendizaje Automático en la Fisioterapia Una Revisión Sistemática de la Literatura [Internet]. Suiza: Zenodo; 2024 [Citado 02/06/2024]. Disponible en: https://doi.org/10.5281/zenodo.10553344
Alnaqbi A, Shousha T, AlKetbi H, Hegazy FA. Physiotherapists’ perspectives on barriers to implementation of direct access of physiotherapy services in the United Arab Emirates: A cross-sectional study. PLoS One. 2021;16(6):e0253155
Alsiri NF, Alansari FH, Sadeq AH. The barriers of scientific research in physiotherapy. J Taibah Univ Med Sci. 2022;17(4):537–47.
Parpaleix A, Parsy C, Cordari M, Mejdoubi M. Assessment of a combined musculoskeletal and chest deep learning-based detection solution in an emergency setting. Eur J Radiol Open. 2023;10.
Marcuzzi A, Nordstoga AL, Bach K, Aasdahl L, Nilsen TIL, Bardal EM, et al. Effect of an Artificial Intelligence-Based Self-Management App on Musculoskeletal Health in Patients With Neck and/or Low Back Pain Referred to Specialist Care: A Randomized Clinical Trial. JAMA Netw Open. 2023;6(6):e2320400.
Rungruanganukul M, Siriborvornratanakul T. Deep Learning Based Gesture Classification for Hand Physical Therapy Interactive Program. En: Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Posture, Motion and Health [Internet]. Philadelphia: Springer; 2020. pp. 349-58 [Citado 02/06/2024]. https://www.researchgate.net/publication/342822241_Deep_Learning_Based_Gesture_Classification_for_Hand_
Physical_Therapy_Interactive_Program
Tan RRM, Feng C, Seah HS, Lin F. Movability assessment on physiotherapy for shoulder periarthritis via fine-grained 3D ResNet deep learning. SPIE-Intl Soc Optical Eng [Internet]. 2021 [Citado 02/06/2024];1. Disponible en: https://ui.adsabs.harvard.edu/abs/2021SPIE11792E..0HT/abstract
Kempitiya T, De Silva D, Rio E, Skarbez R, Alahakoon D. Personalised Physiotherapy Rehabilitation using Artificial Intelligence and Virtual Reality Gaming. En: International Conference on Human System Interaction, HSI. IEEE Computer Society. Australia 29 July – July, 2022 [Internet]. Nueva Jersey: IEEE; 2022 [Citado 02/06/2024]. Disponible en: https://
ieeexplore.ieee.org/xpl/conhome/9869420/proceeding
Arora A, Vijayvargiya A, Kumar R, Tiwari M. Machine Learning based Risk Classification of Musculoskeletal Disorder among the Garment Industry Operators. En: Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021 [Internet]. New York: Institute of Electrical and Electronics Engineers Inc.; 2021.
pp. 1193-8 [Citado 02/06/2024]. Disponible en: https://www.researchgate.net/publication/355058005_Machine_Learning_based_Risk_Classification_of_Musculoskeletal_Disorder_among_the_Garment_Industry_Operators
Pattison C, Steffen A, Roopaei M. An AI-Based Exergame to Assist Occupational and Physical Therapy. En: 2023 IEEE World AI IoT Congress, AIIoT 2023. New York: Institute of Electrical and Electronics Engineers Inc.; 2023. pp. 804-7.
Francisco JA, Rodrigues PS. Computer Vision Based on a Modular Neural Network for Automatic Assessment of Physical Therapy Rehabilitation Activities. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023;31: 2174-83.
Tannoury A, Elias M Choueiri, Darazi R. Human Pose Estimation Using Depth-Wise Separable Convolutional Neural Networks [Internet]. Suiza: Zenodo; 2022 [Citado 02/06/2023]. Disponible en: https://doi.org/10.5281/
zenodo.7141044
Chen J, Huang X, Wang X, Qiao H. Recurrent Neural Network based Partially Observed Feedback Control of Musculoskeletal Robots. En: ICARM 2022 - 2022 7th IEEE International Conference on Advanced Robotics and
Mechatronics [Internet]. Nueva Jersey: Institute of Electrical and Electronics Engineers Inc. 2022. pp. 12-8 [Citado 02/06/2023]. Disponible en: https://www.researchgate.net/publication/365855179_Recurrent_Neural_Network_
based_Partially_Observed_Feedback_Control_of_Musculoskeletal_Robots
Lee MH, Siewiorek DP, Smailagic A, Bernardino A, Badia SB. Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy: Iterative Design and Evaluation with Therapists and Post-stroke Survivors. Int J Soc Robot
[Internet]. 2024;16:1-22 [Citado 02/06/2024]. Disponible en: https://link.springer.com/article/10.1007/s12369-022-00883-0
Kawaharazuka K, Tsuzuki K, Onitsuka M, Asano Y, Okada K, Kawasaki K, et al. Object Recognition, Dynamic Contact Simulation, Detection, and Control of the Flexible Musculoskeletal Hand Using a Recurrent Neural Network
with Parametric Bias. IEEE Robot Autom Lett. 2020;5(3):4580-7.
Román-Belmonte JM, De la Corte-Rodríguez H, Rodríguez-Merchán EC. Artificial intelligence in musculoskeletal conditions. Frontiers in Bioscience - Landmark. 2021; 26:1340-8.
Nast I, Tal A, Schmid S, Schoeb V, Rau B, Barbero M, et al. Physiotherapy Research Priorities in Switzerland: Views of the Various Stakeholders. Physiotherapy Research International. 2016;21(3):137-46.
Oosman S, Weber G, Ogunson M, Bath B. Enhancing Access to Physical Therapy Services for People Experiencing Poverty and Homelessness: The Lighthouse Pilot Project. Physiotherapy Canada. 2019;71(2):176-86.
Añadir comentario
![Licencia de Creative Commons](https://i.creativecommons.org/l/by-nc/4.0/88x31.png)
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.