Antimicrobial susceptibility and serovarieties of Salmonella isolated from meat and meat products
Keywords:
Salmonella, serovarieties, antimicrobial resistance, food, meat, antibiotic.Abstract
Introduction: Poultry and other types of meat from infected animals are important vehicles of salmonellosis.
Objective: To determine the susceptibility to antimicrobial agents and serovarieties of Salmonella isolated from meat and meat products.
Material and Methods: A total of 159 isolates were analyzed at the Cuban National Institute of Hygiene, Epidemiology and Microbiology during the period between January 2012 and March 2020. Serotypes were determined according to ISO/TR 6579-3: 2014. Antimicrobial susceptibility was determined by the Bauer-Kirby technique, according to the methodology described in the regulations of the Clinical and Laboratory Standards Institute.
Results: The most frequent serovarieties identified were S. Enteritidis, S. Agona, S. Derby, S. Infantis and S. London. Also, 18 (43, 9 %) of serovarieties identified in fresh meat were found in processed meat. The highest percentages were related to antimicrobial resistance to nalidixic acid, tetracycline and ampicillin. S. Enteritidis and S. Typhimurium serotypes showed resistance to a greater number of antibiotics.
Conclusions: The results suggest that fresh meats are an important source of Salmonella contamination, including those that are carriers of antimicrobial-resistant pathogens.
Downloads
References
1.European Food Safety Authority. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA Journal [Internet]. 2019 [Citado 22/03/2019];17(2):5598. Disponible en: https://ecdc.europa.eu/sites/portal/files/documents/EU-summary-report-antimicrobial-resistance-zoonotic-bacteria-humans-animals-2017-web.pdf
2. Efstathios G, Live L. Nesse M. Attachment of Salmonella Spp. to Food Contact and Product Surfaces and Biofilm Formation on Them As Stress Adaptation and Survival Strategies. In: Christopher B. Bacteriology research developments. Salmonella prevalence, risk factors and treatment options. New York: Nova Science; 2015. p. 111-36.
3. Chantziaras I, Boyen F, Callens B, Dewulf J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J Antimicrob Chem [Internet]. 2014[Citado 23/09/2018];69:827-34. Disponible en: https://academic.oup.com/jac/article/69/3/827/788896
4. Mendoza MC, Herrero A, Rodicio MR. Ingeniería evolutiva en Salmonella: la emergencia de plásmidos híbridos de virulencia-resistencia a antimicrobianos en serotipos no tifoideos. Enf Infec Microbiol Clin [Internet]. 2009 [Citado 23/09/2018]; 27(1):37-43. Disponible en: https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-articulo-ingenieria-evolutiva-salmonella-emergencia-plasmidos-S0213005X08000062
5. Kim KY, Park JH, Kwak HS, Woo GJ. Characterization of the quinolone resistance mechanism in foodborne Salmonella isolates with high nalidixic acid resistance. Int J Food Microbial [Internet]. 2011[Citado 23/09/2018];146(1):52-6. Disponible en: https://doi.org/10.1016/j.ijfoodmicro.2011.01.037
6. Jin Y, Jung J, Jeon S, Lee J, Oh Y, Choi Y, Chae Y. Mutations in gyrA and parC genes and plasmid-mediated quinolone resistance in non-typhoid Salmonella isolated from pediatric patients with diarrhea in Seoul. J Bact Virol [Internet]. 2012 [Citado 26/03/2018];42(3):203. Disponible en:http://doi.org/10.4167/jbv.2012.42.3.203
7. Seral C, Pardos de la Gándara M, Castillo FJ. Betalactamasas de espectro extendido en enterobacterias distintas de Escherichiacoli y Klebsiella. Enf Infecc Microbiol Clin [Internet]. 2010 [Citado 20/06/2018];28(Supl 1):12-8. Disponible en: https://www.seimc.org/contenidos/ccs/revisionestematicas/bacteriologia/ccs-2008-bacteriologia1.pdf
8. Puñales O, Leyva V. Situación de las enfermedades transmitidas por alimentos. En: El análisis de riesgos como base de los sistemas de inocuidad de los alimentos. Cuba: Centro de Gestión y Desarrollo de la Calidad; 2013: p. 64-78.
9. Puig Y, Espino M, Leyva V, Aportela N, Machín M, Soto P. Serovariedades y patrones de susceptibilidad a los antimicrobianos de cepas de Salmonella aisladas de alimentos en Cuba. Rev Panam Salud Pública [Internet]. 2011. [Citado 20/06/2018];30(6):561-5. Disponible en: https://www.scielosp.org/article/ssm/content/raw/?resource_ssm_path=/media/assets/rpsp/v30n6/a11v30n6.pdf
10. Oficina Nacional de Normalización Oficina Nacional de Normalización. Microbiología de alimentos de consumo humano y animal. Método horizontal para la detección de Salmonella spp. — Método de Referencia (ISO 6579:2002). La Habana: Oficina Nacional de Normalización; 2008.
11. Grimont PAD, Weill FX. Antigenic formulae of the Salmonella serovars. WHO Collaborating Center for Reference and Research on Salmonella. 9 ed [Internet]. Paris: Institut Pasteur; 2007 [Citado 26/03/2018]. Disponible en:http://www.pasteur.fr/ip/portal/action/WebdriveActionEvent/oid/01s-000036-089
12. International Organization for Standardization. Microbiology of the food chain -- Horizontal method for the detection, enumeration and serotyping of Salmonella -- Part 3: Guidelines for serotyping of Salmonella spp. Norma ISO/TR 6579-3:2014 [Internet]. Switzerland: International Organization for Standardization; 2014 [Citado 26/03/2018]. Disponible en: https://www.iso.org/standard/56714.html
13. Organización Mundial de la Salud. WHONET 5.4. Software para la vigilancia de la resistencia antimicrobiana y control de infecciones [Internet]. Genova: Organización Mundial de la Salud; 2008 [Citado 12/08/2018]. Disponible en: http://www.who.int/drugresistance/whonetsoftware/
14. Wayne, PA.. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI [Internet]. 2015 [Citado 12/08/2018];35(3):100-25. Disponible en: https://clsi.org/media/3481/m100ed30_sample.pdf
15. Simpson KMJ, Hill Cawthorne GA, Ward MP. Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia. BMC Infect Dis [Internet]. 2018 Citado 22/10/2019;18:623. Disponible en:https://doi.org/10.1186/s12879-018-3563-1
16. Yang X, Wu Q, Zhang J, Huang J, Chen L, Wu S, et al. Prevalence, Bacterial Load, and Antimicrobial Resistance of Salmonella Serovars Isolated From Retail Meat and Meat Products in China. Front Microbiol [Internet]. 2019 Citado 22/10/2019;10:2121. Disponible en: http://doi.org.10.3389/fmicb.2019.02121
17. Ferrari RG, Rosario DK, Cunha Neto A, Mano SB, Figueiredo EE, Conte Junior CA. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: a Meta-analysis. Appl Environ Microbiol [Internet]. 2019 Citado 22/10/2019; 85(14):[Aprox. 2 p.]. Disponible en: http://doi.org.10.1128/AEM.00591-19
18. International Commissions on Microbial Specifications for Foods. Poultry products. In: Microorganisms in foods use of data for assessing process control and product acceptance. New Cork: Ed. Springer; 2011.p. 94-106.
19. Quesada A, Reginatto GA, Ruiz A, Colantonio LD, Burrone MS. Resistencia antimicrobiana de Salmonella spp aislada de alimentos de origen animal para consumo humano. Rev Perú Med Exp Salud Pública [Internet]. 2016 Citado 22/02/2016;33(1):32-44. Disponible en: http://www.scielo.org.pe/pdf/rins/v33n1/a05v33n1.pdf
20. Devendra HS, Narayan CP, Willium CS, Crespo R, Guard J. Population dynamics and antimicrobial resistance of the most prevalent poultry associated Salmonella serotypes. Poultry Science [Internet]. 2017 [Citado 26/03/2018];96(3):687-702. Disponible en: https://academic.oup.com/ps/article/96/3/687/2623810
21. Franco A, Leekitcharoenphon P, Feltrin F, Alba P, Cordaro G, Iurescia M, et al. Emergence of a clonal lineage of multidrug-resistant ESBL-producing Salmonella Infants transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. PLoSOne [Internet]. 2015 Citado16/06/2016;10(12):e0144802. Disponible en: https://doi.org/10.1371/journal.pone.0144802
22. Rodríguez R, Frizzo LS, Bueno DJ, Zbrun MV, Signorini M. Riesgos microbiológicos asociados al consumo de carne aviar. La Industria Cárnica Latinoamericana [Internet]. 2019 Citado16/06/2016;44(212):[Aprox. 2p.]. Disponible en: https://repositorio.inta.gob.ar/xmlui/bitstream/handle/20.500.12123/6323/INTA_CIEP_Rodriguez_R_Riesgos_microbiologicos_asociados_carne_aviar.pdf?sequence=2&isAllowed=y
23. Munyadziwa M, Marius SA, Moipone RA, Keddy KH. Investigation of Salmonella Enteritidis outbreaks in South Africa using multi-locus variable-number tandem-repeats analysis, 2013-2015. Infect Diseas BMC [Internet]. 2017 Citado 22/03/2016; 17:661. Disponible en: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-017-2751-8
24. Nair DVT, Venkitanarayanan K, Kollanoor AJ. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control of Antibiotic Alternatives for Control. Foods [Internet]. 2018 Citado 20/11/2019;7(10): 167. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210005/
25. Andersen JL, He GX, Kakarla P, Ranjana KC, Kumar S, Lakra WS, et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health [Internet]. 2015 Citado 26/03/2016;12(2):1487-547. Disponible en:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344678/
26. Espino Hernández M, Puig Peña Y, Leyva Castillo V, Martino Zagovalov TK, Méndez Morales D. Resistencia a los antimicrobianos en cepas de Salmonella spp y Escherichia coli aisladas de alimentos. Cuba 2004-2007. Rev Panam Infectol. 2010; 12(2):37-43.
27. Puig Peña Y, Leyva Castillo V, Kely Martino Zagovalov T. Estudio de susceptibilidad antimicrobiana en cepas de Salmonella sp aisladas de alimentos. Rev haban cienc méd [Internet]. 2008 [Citado 22/12/2020],7(2):[Aprox. 2 p.]. Disponible en: http://www.revhabanera.sld.cu/index.php/rhab/article/view/1415
28. Quino Willi, Hurtado CV, Meza AM, Zamudio ML, Gavilaán RG. Patrones de resistencia a los antimicrobianos en serovares de Salmonella enterica en Perú, 2012-2015. Rev Chil Infectol [Internet]. 2020 Ago [Citado 22/12/2020];37(4):395-401. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-10182020000400395&lng=eshttp://dx.doi.org/10.4067/S0716-10182020000400395
29. Liakopoulos A, Yvon Geurts Y, Dierikx CM, Brouwer MSM, Kant A, Wit B, et al. Extended-Spectrum Cephalosporin-Resistant Salmonella enterica serovar Heidelberg Strains, the Netherlands. Emerg Infect Dis [Internet]. 2016 Jul [Citado 22/12/2020];22(7):1257-61. Disponible en: http://doi.org.10.3201/eid2207.151377
30. Rivera MS, Granda AN, Felipe L, Bonachea H. Resistencia antimicrobiana en cepas de Salmonella entericasub sp enterica aisladas en carnes de aves importadas. Rev Salud Anim [Internet]. 2012 [Citado 23/11/2019];34(2):120-6. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-570X2012000200010&lng=es
31. Ballesteros N, Rubio MS, Delgado E, Méndez D, Braña D, Rodas O. Perfil de resistencia a antibióticos de serotipos de Salmonella spp. aislados de carne de res molida en la Ciudad de México. Salud pública Méx [Internet]. 2016 Jun [Citado 23/10/2017];58(3):371-7. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342016000300371&lng=es