Prediction model for metabolic syndrome in adults from Trujillo, Peru
Keywords:
Adults, cholesterol, HDL cholesterol, triglycerides, lifestyles, metabolic syndrome.Abstract
Introduction: The metabolic syndrome is a confluence of metabolic alteration that involves blood glucose and lipid profile, blood pressure, and especially obesity that increase cardiovascular risk.
Objective: To estimate a prediction model for metabolic syndrome (MS) in adults from the District of Trujillo (Peru) on the basis of atherogenic, anthropometric and lifestyle indicators.
Material and Methods: A total of 260 adults between 30 and 65 years old from the City of Trujillo participated in the study. MS was identified using the ALAD and harmonized ATP III criteria, and a questionnaire containing questions on lifestyles was applied. Logistic regression was used for statistical analysis.
Results: The results of the study show that 70.8% and 38.5% consume soda and snack; 56.2 % and 58.1 % do not consume fruits and vegetables; and 47.7 % of them do not do physical activity. According to ALAD and ATP III, 46.2 % and 48.1 % presented MS, respectively. The BMI (OR: 11.014; 95 % CI: 4.337-27.971); Castelli Index (OR: 2.344; 95 % CI: 1.074-5.113) and TG / HDL (OR: 3.584; 95 % CI: 1.774-7.242) were associated with MS according to ALAD criteria. Sex (OR: 2.385; 95 % CI: 1.2-4.739); Age (OR: 1,939; 95 % CI: 1,032 - 3,644); BMI (OR: 5.880; 95 % CI: 2.547-13.576); Castelli index (OR: 2,935; 95 % CI: 1,295-6,653) and TG/HDL (OR: 6,937; 95 % CI 3,232-14,889) were associated with MS according to ATP III criteria. There was no association between lifestyle and MS.
Conclusions: It is concluded that the prediction model for MS according to ALAD criteria involves BMI, Castelli index and TG/HDL index; gender and age are added in the model for MS according to harmonized ATP III criteria.Downloads
References
1. Raimi TH, Dele Ojo BF, Dada SA, Fadare JO, Ajayi DD, Ajayi EA, et al. Triglyceride-Glucose Index and Related Parameters Predicted Metabolic Syndrome in Nigerians. Metab Syndr Relat Disord [Internet].2021 [Citado 10/10/2020];19(2):76-82. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33170086/
2. Saklayen M. The Global Epidemic of the Metabolic Syndrome. Current Hypertension Reports [Internet].2018 [Citado 10/10/2020];20(2):12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866840/
3. Giuseppe S, Dianin M, Bertocco A, Zanforlini B, Curreri C, Mazzochin M. Gender differences in the impact of metabolic syndrome components on mortality in older people: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2020; 30(9):1452-464.
4. Linkner E, Humphreys C. Insulin Resistance and the Metabolic Syndrome. En: Rakel D, ed. Integrative Medicine. 4 ed. Filadelfia: Elsevier; 2018.p. 320-33.
5. Tenk J, Peter M, Hegyi M, Rostás I, Garami A, Szabó I. Perceived stress correlates with visceral obesity and lipid parameters of the metabolic syndrome: A systematic review and meta-analysis. Psychoneuroendocrinology [Internet].2018 [Citado 10/10/2020];95(2018):63-73. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29803182/
6. Wilsgaard T, Jacobsen B. Lifestyle factors and incident metabolic syndrome The Tromsø Study 1979–2001. Diabetes Res Clin Pract [Internet].2007 [Citado 13/10/2020];78(2):227-4. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0168822707002094
7. Cuschieri S, Vassallo J, Calleja N, Pace N, Mamo J. The effect of age, gender, TG/HDL-C ratio and behavioral lifestyles on the metabolic syndrome in the high risk Mediterranean Island population of Malta. Diabetes Metab Syndr Clin Res Rev [Internet].2017 [Citado 13/10/2020];11(2017):S321-7. Disponible en: https://doi.org/10.1016/j.dsx.2017.03.009
8. Arsentales V, Tenorio M, Bernabé A. Asociación entre actividad física ocupacional y síndrome metabólico: Un estudio poblacional en Perú. Rev Chil Nutr [Internet].2019 [Citado 25/10/2020];46(4):392-9. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-75182019000400392
9. Bolívar E, Villanueva A. Validación y confiabilidad del Cuestionario AQ-27 de actitudes estigmatizadoras hacia pacientes con esquizofrenia en un Hospital General -2015. Rev Neuropsiquiatr [Internet].2017 [Citado 25/10/2020];80(3):165-71. Disponible en: http://www.scielo.org.pe/pdf/rnp/v80n3/a03v80n3.pdf
10. Domingo F. Utilidad de los índices aterogénicos como marcadores biológicos en el síndrome metabólico [Tesis Doctoral]. Madrid: Universidad Complutense; 2012.
11. Rosas Guzmán J, González Chávez A, Aschner P, Bastarrachea R. Epidemiología, Diagnóstico, Control, Prevención y Tratamiento del Síndrome Metabólico en Adultos. ALAD [Internet].2010 [Citado 03/11/2020];18(1):25-44. Disponible en: https://www.revistaalad.com/pdfs/100125-44.pdf
12. Lizarzaburu J. Síndrome Metabólico: concepto y aplicación práctica. A Fac Med [Internet]. 2014 [Citado 03/11/2020];74(4):315. Disponible en: http://www.scielo.org.pe/pdf/afm/v74n4/a09v74n4.pdf
13. Hosmer D, Lemeshow S, Sturdivant R. Applied Logistic Regression. 3 ed. EE UU: A Wiley Interscience Publication; 2013.
14. Seclén S. Diabetes Mellitus en el Perú: hacia dónde vamos. Rev Med Hered. [Internet]. 2015 [Citado 11/11/2020];26(1):3-4. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2015000100001
15. Sifuentes V. Los hábitos alimentarios y las redes de soporte social de los adultos mayores. Revista Peruana Sicología Trabajo Social [Internet]. 2016 [Citado 11/11/2020];5(2):77-94. Disponible en: http://revistas.uigv.edu.pe/index.php/psicologia/article/view/515/460
16. Tarqui Mamani C, Álvarez Dongo D, Espinoza Oriundo P. Prevalencia y factores asociados a la baja actividad física de la población peruana. Nutr Clin y Diet Hosp [Internet].2017 [Citado 11/11/2020];37(4):108-15. Disponible en: https://revista.nutricion.org/PDF/TARQUIMA.pdf
17. Huamán J, Álvarez M, Gamboa L, Marino F. Índice cintura-estatura como prueba diagnóstica del Síndrome Metabólico en adultos de Trujillo. Rev Med Hered [Internet]. 2017 [Citado 11/11/2020];28(1):13-20. Disponible en:
http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2017000100003
18. Instituto Nacional Estadística Información. Enfermedades No Transmisibles y Transmisibles. Lima:INEI; 2020.
19. Millán J, Hernández Mijares A, Ascaso JF, Blasco M, Brea A, Díaz Á, et al. The real measurement of non-HDL-cholesterol: Atherogenic cholesterol. Clin Investig Arterioscler. 2016;28(6):265-70.
20. Zúñiga Hurtado C, Álvarez Cedeño G, Aguirre Espinosa A, Pozo Arcentales M. Utilidad del índice aterogénico en la predicción de enfermedad coronaria. Recimundo [Internet].2020 [Citado 02/12/2020];4(1):78-89. Disponible en: https://doi.org/10.26820/recimundo/4.(1).esp.marzo.2020.78-89
21. Ren X, Chen ZA, Zheng S, Han T, Li Y, Liu W, et al. Association between triglyceride to HDL-C Ratio (TG/HDL-C) and insulin resistance in chinese patients with newly diagnosed type 2 diabetes mellitus. PLoS One [Internet].2016 [Citado 12/03/2021];11(4):1-13. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27115999/
22. Bernabé Ortiz A, Carrillo Larco RM, Gilman RH, Checkley W, Smeeth L, Miranda JJ, et al. Contribution of modifiable risk factors for hypertension and type-2 diabetes in Peruvian resource-limited settings. J Epidemiol Community Health [Internet]. 2015 [Citado 12/03/2021];70(1):49-55. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26248550/
23. Singh SK, Aggarwal J, Kathariya G, Manzoor S. Usefulness of the TG/HDL ratio in predicting cardiovascular risk: A MMIMSR experience. JK Sci [Internet].2020 [Citado 12/03/2021];22(2):75-9. Disponible en: https://www.jkscience.org/archives/volume222/7-Original%20Article.pdf
24. Dos Prazeres E, Sabino C, Dornelas A, Galvão I, Da Silva A, Kruze I. Razón entre grasa visceral y subcutánea como predictor de alteraciones cardiometabólicas. Rev Chil Nutr [Internet].2018 [Citado 23/03/2021];45(1):28-36. Disponible en: https://scielo.conicyt.cl/pdf/rchnut/v45n1/0716-1549-rchnut-45-01-0028.pdf
25. Von Bibra H, Saha S, Hapfelmeier A, Müller G, Schwarz P. Impact of the Triglyceride/High-Density Lipoprotein Cholesterol Ratio and the Hypertriglyceremic-Waist Phenotype to Predict the Metabolic Syndrome and Insulin Resistance. Horm Metab Res [Internet].2017 [Citado 23/03/2021];49(07):542-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28597452/
26. Salcedo Cifuentes M, Belalcazar S, Acosta EY, Medina Murillo JJ. Conventional biomarkers for cardiovascular risks and their correlation with the castelli risk index-indices and TG/HDL-c. Arch Med [Internet].2019 [Citado 23/03/2021];20(1):11-22. Disponible en: https://revistasum.umanizales.edu.co/ojs/index.php/archivosmedicina/article/view/3534/5414
27. Instituto Nacional Estadística Informática. Estadísticas con enfoque de género. Trimestre enero-febrero 2020. Lima: INEI; 2020.
28. Gygliola P, Tarquino G, Chambi E, Averanga K, Salcedo L. Determinación de glucosa: El uso de glucómetros como prueba rápida de análisis. J Selva Andina Res Soc [Internet].2020 [Citado 23/03/2021];11:38-48. Disponible en: http://www.scielo.org.bo/pdf/jsars/v11n1/v11n1_a05.pdf