Family inherited, prenatal and perinatal risk factors in Cuban children with primary autism
Keywords:
Autism, risk factors, genetic, environment, genealogy, delayed effects of prenatal exposure.Abstract
Introduction: Primary autism is a heterogeneous neurobehavioral disorder of uncertain etiology in which both genes and the environment contribute to the pathogenesis of the disorder.
Objective: To identify family inherited, prenatal and perinatal risk factors in Cuban children with primary autism.
Material and Methods: An observational case-control study (1:1) was carried out in children with primary autism, treated at "Juan Manuel Márquez" Pediatric Hospital, Havana, in the period from October of 2014 to September of 2019. The sample was made up of 126 cases and 126 controls. Data on neuropsychiatric diseases, prenatal and perinatal history of three generations were collected. Multivariate logistic regression was performed to identify risk factors related to primary autism.
Results: The odds of presenting primary autism were approximately seven and four times higher in children of mothers and fathers of advanced ages, respectively. A history of language disorders and epilepsy in first-degree relatives conferred 27- and 24-fold higher odds of presenting with autism, respectively. The odds of presenting autism were approximately ten times greater in children born to pregnant women with anemia, eight times in children born to pregnant women who had bleeding during pregnancy, and 18 times in those born to mothers with a history of pregestational diabetes mellitus.
Conclusions: The history of inherited neuropsychiatric diseases and prenatal and perinatal environmental factors related to hypoxemic events are risk factors for primary autism in the sample of Cuban children studied.
Downloads
References
1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5 ed [Internet]. Washington DC: American Psychiatric Association; 2013 [Citado 27/06/2022]. Disponible en: https://www.appi.org/Diagnostic_and_Statistical_Manual_of_Mental_Disorders_DSM-5_Fifth_Edition
2. Choi L, An JY. Genetic architecture of autism spectrum disorder: Lessons from large-scale genomic studies. Neurosci Biobehav Rev. 2021;128:244-57.
3. Lord C, Elsabbagh M, Baird G, Veenstra Vanderweele J. Autism spectrum disorder. Lancet [Internet]. 2018;392:508-20. Disponible en: https://doi.org/10.1016/S0140-6736(18)31129-2
4. Yip BHK, Bai D, Mahjani B, Klei L, Pawitan Y, Hultman CM. Heritable variation, with little or no maternal effect, accounts for recurrence risk to autism spectrum disorder in Sweden. Biol Psychiatry [Internet]. 2018;83(7):589-97. Disponible en: https://doi.org/10.1016/j.biopsych.2017.09.007
5. Mehra C, Sil A, Hedderly T, Kyriakopoulos M, Lim M, Turnbull J, et al. Childhood disintegrative disorder and autism spectrum disorder: a systematic review. Dev Med Child Neurol [Internet]. 2019;61(5):523-34. Disponible en: https://doi.org/10.1111/dmcn.14126
6. Taylor MJ, Rosenqvist MA, Larsson H, Gillberg C, D'Onofrio BM, Lichtenstein P, et al. Etiology of autism spectrum disorders and autistic traits over time. JAMA Psychiatry [Internet]. 2020;77(9):936-43. Disponible en: https://doi.org/10.1001/jamapsychiatry.2020.0680
7. WHO. ICD-11 for Mortality and Morbidity Statistics. Autism spectrum disorder. Versión: 05/2021 [Internet]. Geneva: WHO; 2021 [Citado 27/06/2022]. Disponible en: https://icd.who.int/dev11/l-m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f437815624
8. Schopler E, Reichler RJ, DeVellis RF, Daly K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J Autism Dev Disord [Internet]. 1980; 10: 91-103. Disponible en: https://doi.org/10.1007/BF02408436
9. Bo Olsson. Autistic traits in the Rett syndrome. Brain & Development [Internet]. 1987;9(5):491-8. Disponible en: https://doi.org/10.1016/S0387-7604(87)800712
10. Giangreco CA, Steele MW, Aston CE, Cummins JH, Wenger SL. A simplified six-item checklist for screening for fragile X syndrome in the pediatric population. J Pediatr [Internet]. 1996;129(4):611-4. https://doi.org/10.1016/s0022-3476(96)70130-0
11. The World Medical Association. Declaración de Helsinki de la AMM – Principios éticos para las investigaciones médicas en seres humanos [Internet]. Francia: WMA; 2021 [Citado 27/06/2022]. Disponible en: https://www.wma.net/wp-content/themes/med/assets/img/icon/pdf.png
12. Bolton PF, Pickles A, Murphy M, Rutter M. Autism, affective and other psychiatric disorders: patterns of familial aggregation. Psychol Med [Internet]. 1998;28(2):385-95. Disponible en: https://doi.org/10.1017/s0033291797006004
13. Brennand KJ, Simone A, Tran N, Gage F. Modeling psychiatric disorders at a cellular and network levels. Mol Psychiatry [Internet]. 2012;17(12):1239-53. Disponible en: https://doi.org/10.1038/mp.2012.20
14. Khanzada NS, Butler MG, Manzardo AM. Gene Analytics Pathway analysis and genetic overlap among autism spectrum disorder, bipolar disorder and schizophrenia. Int J Mol Sci [Internet]. 2017;18(3):527. Disponible en: https://doi.org/10.3390/ijms18030527
15. Bolton P, Macdonald H, Pickles A, Rios P, Goode S, Crowson M, et al. A case-control family history study of autism. J Child Psychol Psychiatry [Internet]. 1994;35(5):877-900. Disponible en: https://doi.org/10.1111/j.1469-7610.1994.tb02300.x
16. Loussouarn A, Dozières Puyravel B, Auvin S. Autistic spectrum disorder and epilepsy: diagnostic challenges. Expert Rev Neurother [Internet]. 2019;19(6):579-85. Disponible en: https://doi.org/10.1080/14737175.2019.1617699
17. Peng J, Zhou Y, Wang K. Multiplex gene and phenotype network to characterize shared genetic pathways of epilepsy and autism. Sci Rep [Internet]. 2021;11(1):952. Disponible en: https://doi.org/10.1038/s41598-020-78654-y
18. Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci [Internet]. 2018;47:534-48. Disponible en: https://doi.org/10.1111/ejn.13595
19. Hamza M, Halayem S, Mrad R, Bourgou S, Charfi F, Belhadj A. Epigenetics' implication in autism spectrum disorders: A review. Encephale [Internet]. 2017;43(4):374-81. Disponible en: https://doi.org/10.1016/j.encep.2016.07.007
20. Almandil NB, Alkuroud DN, Abdul Azeez S, Al Sulaiman A, Elaissari A, Borgio F. Environmental and genetic factors in autism spectrum disorders: special emphasis on data from Arabian studies. Int J Environ Res Public Health [Internet]. 2019;16:658. Disponible en: https://doi.org/10.3390/ijerph16040658
21. Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci [Internet]. 2019;76(7):1275-97. Disponible en: https://doi.org/10.1007/s00018-018-2988-4
22. Wu S, Wu F, Ding Y, Hou J, Bi J, Zhang Z. Advanced parental age and autism risk in children: a systematic review and meta-analysis. Acta Psychiatr Scand [Internet]. 2017;135(1):29-41. Disponible en: https://doi.org/10.1111/acps.12666
23. Esposito G, Azhari A, Borelli JL. Gene × Environment interaction in developmental disorders: where do we stand and what's next?. Front Psychol [Internet]. 2018;9:2036. Disponible en: https://doi.org/10.3389/fpsyg.2018.02036
24. Wan H, Zhang C, Li H, Luan S, Liu C. Association of maternal diabetes with autism spectrum disorders in offspring: A systemic review and meta-analysis. Medicine (Baltimore) [Internet]. 2018;97(2):e9438. Disponible en: https://doi.org/10.1097/MD.0000000000009438
25. Ornoy A, Becker M, Weinstein Fudim L, Ergaz Z. Diabetes during pregnancy: a maternal disease complicating the course of pregnancy with long-term deleterious effects on the offspring. Int J Mol Sci [Internet]. 2021;22(6):2965. Disponible en: https://doi.org/10.3390/ijms22062965
26. Maher GM, O'Keeffe GW, Kearney PM, Kenny LC, Dinan TG, Mattsson M, et al. Association of hypertensive disorders of pregnancy with risk of neurodevelopmental disorders in offspring: a systematic review and meta-analysis. JAMA Psychiatry [Internet]. 2018;75(8):809-19. Disponible en: https://doi.org/10.1001/jamapsychiatry.2018.0854
27. Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu SQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev [Internet]. 2018;98(3):1241-334. Disponible en: https://doi.org/10.1152/physrev.00043.2017
28. Brumbaugh JE, Weaver AL, Myers SM, Voigt RG, Katusic SK. Gestational age, perinatal characteristics, and autism spectrum disorder: a birth cohort study. J Pediatr [Internet]. 2020;220:175-83.e8. Disponible en: https://doi.org/10.1016/j.jpeds.2020.01.022
29. Wang C, Geng H, Liu W, Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine (Baltimore) [Internet]. 2017;96(18):e6696. Disponible en: https://doi.org/10.1097/MD.0000000000006696
30. Lechpammer M, Wintermark P, Merry KM, Jackson MC, Jantzie LL, Jensen FE. Dysregulation of FMRP/mTOR signaling cascade in hypoxic-ischemic injury of premature human brain. J Child Neurol [Internet]. 2016;31(4):426-32. Disponible en: https://doi.org/10.1177/0883073815596617