Renal repercussion of low birth weight

Authors

Keywords:

Low birth weight, kidney, developmental programming, nephrons, nephrogenesis, kidney function

Abstract

Introduction: Developmental programming predisposes the
individual to suffer from diseases during adulthood. Low birth weight
(LBW) is one of the markers of the adverse intrauterine environment.
Studies indicate that adverse intrauterine and immediate postnatal
influences can generate structural and functional alterations in some
organs, which will manifest themselves in later stages of life. Among
these diseases is high blood pressure, in which the role of the kidney is
demonstrated.
Objective: To systematize studies that assess the changes that occur
in kidney morphology and function in individuals with low birth weight.
Material and Methods: A systematic review was carried out from
May to September 2022. The Virtual Regional Health Library and the
PubMed and SciELO Cuba databases were consulted.
Results: A total of 114 articles were recovered, of which 16 were
selected taking into account the inclusion and exclusion criteria.
Morphometric variables of the kidney were evaluated in 13 articles, and
renal function was evaluated in 7 of them. The articles reviewed deal with
research carried out under very varied experimental conditions. In most of
them, it has been demonstrated that LBW causes renal morphofunctional
changes.
Conclusions: The number of nephrons was found to be reduced.
The intensity of glomerular filtration was not found to be different for
the entire renal mass, but it was increased for the isolated nephron. Early
extrauterine nutrition is important. It is evident that the cause and nature
of the disturbance of the maternal-fetal environment must be taken into
account.

Downloads

Download data is not yet available.

References

1. Va L, Bm B. Clinical consequences of developmental programming of low nephron number. Anatomical record (Hoboken, NJ : 2007) [Internet]. 2019 23 jul 2022 [cited 2022 sept 20]. Available from: https://pubmed.ncbi.nlm.nih.gov/31587509/.

2. Guarner-Lans V, Ramírez-Higuera A, Rubio-Ruiz ME, Castrejón-Téllez V, Soto ME, Pérez-Torres I. Early Programming of Adult Systemic Essential Hypertension. International journal of molecular sciences [Internet]. 2020 31 may 2022 [cited 2022 sept 20]; 21(4):[1203 p.]. Available from: https://www.mdpi.com/1422-0067/21/4/1203

https://mdpi-res.com/d_attachment/ijms/ijms-21-01203/article_deploy/ijms-21-01203-v2.pdf?version=1581569641.

3. Kanda T, Murai-Takeda A, Kawabe H, Itoh H. Low birth weight trends: possible impacts on the prevalences of hypertension and chronic kidney disease. Hypertens Res [Internet]. 2020 10 may 2022 [cited 2022 sept 20]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32393862

https://www.nature.com/articles/s41440-020-0451-z.

4. Capelli I, Vitali F, Zappulo F, Martini S, Donadei C, Cappuccilli M, et al. Biomarkers of Kidney Injury in Very-low-birth-weight Preterm Infants: Influence of Maternal and Neonatal Factors. In Vivo [Internet]. 2020 30 may 2022 [cited 2022 sept 20]; 34(3):[1333-9 pp.]. Available from: http://iv.iiarjournals.org/content/34/3/1333

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279835/pdf/in_vivo-34-1333.pdf.

5. Luyckx VA, Chevalier RL. Impact of early life development on later onset chronic kidney disease and hypertension and the role of evolutionary trade-offs. Experimental physiology [Internet]. 2022 16 may 2022 [cited 2022 sept 21]; 107(5):[410-4 pp.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35037332

https://www.zora.uzh.ch/id/eprint/214838/1/Experimental_Physiology_-_2021_-_Luyckx_-_Impact_of_early_life_development_on_later_onset_chronic_kidney_disease_and.pdf.

6. Coats LE, Davis GK, Newsome AD, Ojeda NB, Alexander BT. Low birth weight, blood pressure and renal susceptibility. Current hypertension reports [Internet]. 2019 2 jun 2022 [cited 2022 sept 20]; 21:[1-9 pp.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8109258/pdf/nihms-1698172.pdf.

7. Luyckx V, Moritz K, Bertram J. Programación del desarrollo de la presión arterial y la función renal a lo largo de la vida. In: Alan S, Chertow GM, Luyckx V, Marsden PA, Skorecki K, Taal MW, editors. Brenner y Rector El riñón. 1. 11 ed. Barcelona: Elsevier Health Sciences; 2021. p. 667-709.

8. OMS. Metas mundiales de nutrición 2025: documento normativo sobre bajo peso al nacer. Ginebra: Organización Mundial de la Salud, 2017

9. ONEI. Salud Pública. 2023. In: Anuario estadístico de Cuba 2022 [Internet]. La Habana. Edición 2023. [26]. Available from: https://www.onei.gob.cu/sites/default/files/19_salud_publica_asistencia_social_2022_edicion_2023.pdf.

10. Guyton AC. Abnormal renal function and autoregulation in essential hypertension. Hypertension (Dallas, Tex : 1979) [Internet]. 1991 25 ene 2019 [cited 2022 sept 19]; 18:[49-53 pp.]. Available from: https://pubmed.ncbi.nlm.nih.gov/1937686/.

11. Jebasingh F, Thomas N. Barker Hypothesis and Hypertension. Frontiers in public health [Internet]. 2021 15 jun 2022 [cited 2022 25 sept]; 9:[767545 p.]. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2021.767545/full.

12. Brathwaite KE, Levy RV, Sarathy H, Agalliu I, Johns TS, Reidy KJ, et al. Reduced kidney function and hypertension in adolescents with low birth weight, NHANES 1999-2016. Pediatric nephrology (Berlin, Germany) [Internet]. 2023 16 sept 2023 [cited 2022 sept 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/37052695/.

13. Iyengar A, Bonilla-Félix M. Effects of Prematurity and Growth Restriction on Adult Blood Pressure and Kidney Volume. Advances in chronic kidney disease [Internet]. 2022 15 may 2022 [cited 2022 sept 15]; 29(3):[243-50 pp.]. Available from: https://pubmed.ncbi.nlm.nih.gov/36084971/

14. Grandi C. Alterations in fetal kidney development and increased risk for adult diseases. Archivos argentinos de pediatria [Internet]. 2021 10 oct 2021 [cited 2022 sept 16]; 119(5):[e480-e6 pp.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34569748

15. Bianchi ME, Restrepo JM. Low Birthweight as a Risk Factor for Non-communicable Diseases in Adults. Frontiers in medicine [Internet]. 2021 10 jun 2022 [cited 2022 sept 16]; 8:[793990 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770864/

16. Luyckx VA, Brenner BM. Clinical consequences of developmental programming of low nephron number. Anatomical record (Hoboken, NJ : 2007) [Internet]. 2020 10 oct 2021 [cited 2022 sept 16]; 303(10):[2613-31 pp.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31587509

https://anatomypubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ar.24270?download=true

17. Kanzaki G, Tsuboi N, Shimizu A, Yokoo T. Human nephron number, hypertension, and renal pathology. Anatomical record (Hoboken, NJ : 2007) [Internet]. 2020 10 oct 2021 [cited 2022 sept 21]; 303(10):[2537-43 pp.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31729838

https://anatomypubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ar.24302?download=true

18. Vale MSD, Marques PF, Cavalcante MCV, Brito MN, Santos AMD, Salgado-Filho N, et al. Renal deficit and associated factors in children born with low birth weight. Jornal brasileiro de nefrologia [Internet]. 2023 3 Apr 2023 [cited 2023 sept 16]. Available from: https://www.scielo.br/j/jbn/a/CjkPprQMtFGYCBgMQ3ds4Lc/?format=pdf&lang=en

19. Wang Q, Yue J, Zhou X, Zheng M, Cao B, Li J. Ouabain regulates kidney metabolic profiling in rat offspring of intrauterine growth restriction induced by low-protein diet. Life sciences [Internet]. 2020 15 jul 2022 [cited 2022 oct 5]; 259:[118281 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32798554

20. Siddique K, Guzman GL, Gattineni J, Baum M. Effect of postnatal maternal protein intake on prenatal programming of hypertension. Reproductive sciences (Thousand Oaks, Calif) [Internet]. 2014 2 may 2022 [cited 2022 oct 5]; 21(12):[1499-507 pp.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24740990

21. Sene LB, Scarano WR, Zapparoli A, Gontijo JAR, Boer PA. Impact of gestational low-protein intake on embryonic kidney microRNA expression and in nephron progenitor cells of the male fetus. PloS one [Internet]. 2021 1 jul 2022 [cited 2022 sept 20]; 16(2):[e0246289 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33544723

22. Nuñez López N, Nova Bonet Y, Suárez Aguiar AM, Alonso Padilla L, Morgado Gamboa Y, López Marín L. Marcadores morfológicos de hipoxia en el riñón fetal con insuficiencia placentaria tratado con neuro-EPO: estudio en ratas. MediSur [Internet]. 2020 16 ago 2022 [cited 2022 sept 25]; 18(1):[73-81 pp.]. Available from: http://scielo.sld.cu/scielo.php?pid=S1727-897X2020000100073&script=sci_arttext&tlng=en

23. Nemoto T, Nakakura T, Kakinuma Y. Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback. PloS one [Internet]. 2020 16 ago 2022 [cited 2022 sept 22]; 15(8):[e0238223 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32853260

24. Li Y, Wang X, Li M, Pan J, Jin M, Wang J, et al. Long non-coding RNA expression profile in the kidneys of male, low birth weight rats exposed to maternal protein restriction at postnatal day 1 and day 10. PloS one [Internet]. 2015 16 jun 2022 [cited 2022 sept 19]; 10(3):[e0121587 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25826617

25. Lamana GL, Ferrari ALL, Gontijo JAR, Boer PA. Gestational and Breastfeeding Low-Protein Intake on Blood Pressure, Kidney Structure, and Renal Function in Male Rat Offspring in Adulthood. Frontiers in physiology [Internet]. 2021 15 may 2022 [cited 2022 sept 20]; 12:[658431 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33967827

26. Gurusinghe S, Palvanov A, Bittman ME, Singer P, Frank R, Chorny N, et al. Kidney volume and ambulatory blood pressure in children. Journal of clinical hypertension (Greenwich, Conn) [Internet]. 2017 3 may 2022 [cited 2022 sept 22]; 19(5):[498-503 pp.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27982509

27. Diehm CJ, Lumbers ER, Weatherall L, Keogh L, Eades S, Brown A, et al. Assessment of Fetal Kidney Growth and Birth Weight in an Indigenous Australian Cohort. Frontiers in physiology [Internet]. 2017 2 may 2022 [cited 2022 sept 22]; 8:[1129 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29379446

28. de Barros Sene L, Lamana GL, Schwambach Vieira A, Scarano WR, Gontijo JAR, Boer PA. Gestational Low Protein Diet Modulation on miRNA Transcriptome and Its Target During Fetal and Breastfeeding Nephrogenesis. Frontiers in physiology [Internet]. 2021 2 may 2022 [cited 2022 sept 22]; 12:[648056 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34239447

29. Boubred F, Daniel L, Buffat C, Tsimaratos M, Oliver C, Lelièvre-Pégorier M, et al. The magnitude of nephron number reduction mediates intrauterine growth-restriction-induced long term chronic renal disease in the rat. A comparative study in two experimental models. Journal of translational medicine [Internet]. 2016 30 may 2022 [cited 2022 sept 10]; 14(1):[331 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27899104

30. Sene Lde B, Mesquita FF, de Moraes LN, Santos DC, Carvalho R, Gontijo JA, et al. Involvement of renal corpuscle microRNA expression on epithelial-to-mesenchymal transition in maternal low protein diet in adult programmed rats. PloS one [Internet]. 2013 2 mayo 2022 [cited 2022 oct 5]; 8(8):[e71310 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23977013

31. Núñez López N, Pardo Rodríguez M, Izquierdo de la Cruz R, Bacallao Gallestey J. Bajo peso al nacer, morfometría renal y cifras de tensión arterial en adolecentes femeninas. Medisur [Internet]. 2014 16 ago 2022 [cited 2022 sept 25]; 12(6):[851-8 pp.]. Available from: http://scielo.sld.cu/scielo.php?pid=S1727-897X2014000600006&script=sci_arttext&tlng=en.

32. Espinosa Santisteban I, Pérez Ramos A, Barber Fox MO, García Sardiñas J. Creatinina plasmática, filtración glomerular y presión arterial en niños con bajo peso por crecimiento intrauterino retardado. Revista Cubana de Investigaciones Biomédicas [Internet]. 2014 2 may 2022 [cited 2022 sept 18]; 33(2):[161-7 pp.]. Available from: http://scielo.sld.cu/scielo.php?pid=S0864-03002014000200007&script=sci_arttext&tlng=en.

33. Espinosa Santisteban I, Borges Mesa L, Pérez Ramos A, Barber Fox MO, Pérez Mejías A. Desbalance glomérulo tubular en niños y adolescentes con antecedentes de bajo peso al nacer. Revista Habanera de Ciencias Médicas [Internet]. 2016 2 may 2022 [cited 2022 sept 18]; 15(3):[484-93 pp.]. Available from: http://scielo.sld.cu/scielo.php?pid=S1729-519X2016000300017&script=sci_arttext.

34. Park B, Lee JW, Kim HS, Park EA, Cho SJ, Park H. Effects of Prenatal Growth Status on Subsequent Childhood Renal Function Related to High Blood Pressure. Journal of Korean medical science [Internet]. 2019 1 jul 2022 [cited 2022 sept 22]; 34(25):[e174 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31243933

35. Scott RP, Maezawa Y, Kreidberg J, Quaggin SE. Embriología renal. In: Alan S, Chertow GM, Luyckx V, Marsden PA, Skorecki K, Taal MW, editors. Brenner y Rector El riñón. 1. Barcelona: Elsevier Health Sciences; 2021. p. 2-36.

Published

2023-12-12

How to Cite

1.
Pérez Mejías A, Claxton Louit M, Zumeta Dubé MT. Renal repercussion of low birth weight. Rev haban cienc méd [Internet]. 2023 Dec. 12 [cited 2025 Jul. 15];22(4):e5169. Available from: https://revhabanera.sld.cu/index.php/rhab/article/view/5169

Issue

Section

Biomedical Basic Sciences