Effectiveness and safety of corneal crosslinking in patients with long-term progressive keratoconus
Keywords:
keratoconus, cross-linking, visual acuity, keratometry, intraocular pressure, endothelial cell density, lens densitometry.Abstract
Introduction: Progressive keratoconus leads to severe visual impairment. Corneal crosslinking stops or slows its progression.
Objective: To evaluate the effectiveness and safety of treatment with corneal crosslinking in patients with progressive keratoconus 10 years after its application.
Material and Methods: Analytical, correlational and retrospective study carried out between 2019 and 2023 in the Cornea Department of the Cuban Institute of Ophthalmology “Ramón Pando Ferrer”, in 62 patients who presented 10 years of evolution of crosslinking treatment in an eye. Two groups were formed: a study group (1), with eyes with documented progression operated on with corneal crosslinking, and a control, comparison group (2) where the contralateral eyes, without progression at the time of the intervention, were included; they were treated with optical correction.
Results: Best-corrected visual acuity increased by an average of 0.19 tenths (p<0.001) in group 1 (83.9%). Maximum keratometry decreased by an average of 3.62 diopters in group 1 (79.0 %) and increased 7.33 diopters in group 2 (98.4 %) (p<000.1). The treatment failure rate was 4.8 %, the complication rate was 3.2 %, and the endothelial cell loss rate was 2.8 %. Intraocular pressure showed an increase of 2.49 mmHg (p<0.001) and lens densitometry increased by 0.27 gray scale units (p<0.05).
Conclusions: Treatment with corneal crosslinking is effective and safe in patients with progressive keratoconus.Downloads
References
1. Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS. Keratoconus: an updated review. Cont Lens Anterior Eye [Internet]. 2022 [Citado 29/03/2024];45(3):101559. Disponible en: https://doi.org/10.1016/j.clae.2021.101559
2. Hashemi H, Heydarian S, Hooshmand E, Saatchi M, Yekta A, Aghamirsalim M, et al. The prevalence and risk factors for keratoconus: a systematic review and meta-analysis. Cornea [Internet]. 2020 [Citado 29/03/2024];39(2):263-70. Disponi-ble en: https://sci-hub.yncjkj.com/10.1097/ico.0000000000002150
3. Armstrong BK, Smith SD, Romac Coc I, Agarwal P, Mustapha N, Navon S. Screening for keratoconus in a high risk adolescent population. Ophthalmic epi-demiology [Internet]. 2021 [Citado 29/03/2024];28(3):191-7. Disponible en: https://sci-hub.yncjkj.com/10.1080/09286586.2020.1804593
4. Izquierdo L, Henríquez MA, Mannis MJ. Keratoconus: diagnosis and manage-ment. Philadelphia: Elsevier; 2022.
5. Carriazo C, Cosentino MJ. New Frontiers for the treatment of keratoconus. Switzerland: Springer Nature; 2021.
6. Farhat R, Ghannam MK, Azar G, Nehme J, Sahyoun M, Hanna NG, et al. Safe-ty, efficacy, and predictive factors of conventional epithelium-off corneal crosslink-ing in the treatment of progressive keratoconus. J Ophthalmol [Internet]. 2020 [Cit-ado 29/03/2024];2020:7487186. Disponible en: https://doi.org/10.1155/2020/7487186
7. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet A induced collagen cross-linking for the treatment of keratoconus. Am J Ophthalmol [Internet]. 2003 [Citado 29/03/2024];135(5):620-7. Disponible en: https://sci-hub.yncjkj.com/10.1016/s0002-9394(02)02220-1
8. Nicula C, Pop R, Rednik A, Nicula D. 10-Year results of standard crosslinking in patients with progressive keratoconus in Romania. J Ophthalmol [Internet]. 2019 [Citado 29/03/2024]; 2019:8285649. Disponible en: https://doi.org/10.1155/2019/8285649
9. Derakhshan A, Heravian J, Abdolahian M, Bamdad S. Long-term outcomes of collagen crosslinking for early keratoconus. J Ophthalmic Vis Res [Internet]. 2021 [Citado 29/03/2024];16(2):151-7. Disponible en: https://doi.org/10.18502/jovr.v16i2.9077
10. Henríquez MA, Pérez L, Hernández-Sahagun G, Rojas RP, Stulting RD, Izquierdo L. Long term corneal flattening after corneal crosslinking in patients with progressive keratoconus. Clinical ophthalmology (Auckland, NZ) [Internet]. 2023 [Citado 29/03/2024]; 17:1865-75. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327904/
11. Lee J, Son BK, Kim TG, Jin KHJ. Ten-year results after conventional corneal crosslinking in Korean patients with progressive keratoconus. Journal of Korean Ophthalmological Society [Internet]. 2022 [Citado 29/03/2024];63(5):417-25. Dis-ponible en: https://doi.org/10.3341/jkos.2022.63.5.417
12. Elmassry A, Said Ahmed OI, Abdalla MF, Gaballah K. Ten years’ experience of corneal collagen crosslinking: an observational study of 6120 cases. Eur J Op-hthalmol [Internet]. 2021 [Citado 29/03/2024];31(3):951-8. Disponible en: https://sci-hub.yncjkj.com/10.1177/1120672120928921
13. Knutsson KA, Genovese PN, Paganoni G, Ambrosio O, Ferrari G, Zennato A, et al. Safety and efficacy of corneal crosslinking in patients affected by kerato-conus: long-term results. Med Sci (Basel) [Internet]. 2023 [Citado 29/03/2024];11(2):43. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302271/
14. Salman A, Ali A, Rafea S, Omran R, Kubaisi B, Ghabra M, et al. Long-term vis-ual, anterior and posterior corneal changes after crosslinking for progressive kera-toconus. Eur J Ophthalmol [Internet]. 2022 [Citado 29/03/2024];32(1):50-8. Dispo-nible en: https://doi.org/10.1177/11206721211052878
15. Seifert FK, Theuersbacher J, Schwabe D, Lamm O, Hillenkamp J, Kampik D. Long-term outcome of corneal collagen crosslinking with riboflavin and UV-A irra-diation for keratoconus. Curr Eye Res [Internet]. 2022 [Citado 29/03/2024];47(11):1472-8. Disponible en: https://www.medrxiv.org/content/10.1101/2022.02.05.22270507v1.full
16. Ali Javadi M, Kanavi MR, Safi S. A 27-Year report from the Central Eye Bank of Iran. J Ophthalmic Vis Res [Internet]. 2020 [Citado 29/03/2024];15(2):149-59. Dis-ponible en: https://doi.org/10.18502/jovr.v15i2.6731
17. Sabater-Cruz N, Figueras-Roca M, Padró-Pitarch L, Tort J, Casaroli-Marano RP. Corneal transplantation activity in Catalonia, Spain, from 2011 to 2018: evolu-tion of indications and surgical techniques. PLoS One [Internet]. 2021 [Citado 29/03/2024];16(4):e0249946. Disponible en: https://doi.org/10.1371/journal.pone.0249946
18. Jareño OM, Escalona LE, López HS, Castillo PA, Pérez PZ, Márquez VZ. Comportamiento de los trasplantes de córnea. Rev Cubana Oftalmol [Internet]. 2009 [Citado 29/03/2024];22(1):47-51. Disponible en: https://www.imbiomed.com.mx/articulo.php?id=58945
19. Pérez PZ, Ulloa OS, Escalona LE, Castillo PA, Máquez VZ. Caracterización clínica y epidemiológica del queratocono. Rev Cubana Oftalmol [Internet]. 2014 [Citado 29/03/2024];27(4):598-609. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21762014000400010
20. Jareño OM, Pérez PZ, Fernández DTM, Gómez CZ, Escalona LE, Díaz RS. Efectividad del crosslinking del colágeno corneal en el tratamiento del querato-cono. Rev Cubana Oftalmol [Internet]. 2012 [Citado 29/03/2024];25(2):243-53. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21762012000200009
21. Mazzotta C, Traversi C, Baiocchi S, Bagaglia S, Caporossi O, Villano A, et al. Corneal collagen crosslinking with riboflavin and ultraviolet A light for pediatric keratoconus: ten-year results. Cornea [Internet]. 2018 [Citado 29/03/2024];37(5):560-6. Disponible en: https://sci-hub.yncjkj.com/10.1097/ICO.0000000000001505
22. Eguía FM, Río MT, Capote AC. Manual de diagnóstico y tratamiento en oftal-mología. La Habana: ECIMED, 2009.
23. Brodie SE. AAO Basic and Clinical Science Course. 2022-2023 ed. Denmark: European Board of Ophthalmology; c2022. Section 03: Clinical Optics and Vision Rehabilitation [Internet]. EE UU: American Academy of Ophthalmology; 2023 [Citado 29/03/2024]. Disponible en: https://store.aao.org/basic-and-clinical-science-course-section-03-clinical-optics-and-vision-rehabilitation.html
24. Feder RS. AAO Basic and Clinical Science Course. Section 08: External Dis-ease and Cornea [Internet]. EE UU: American Academy of Ophthalmology; 2022 [Citado 29/03/2024]. Disponible en: https://store.aao.org/basic-and-clinical-science-course-section-08-external-disease-and-cornea.html
25. Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg [Internet]. 2009 [Citado 29/03/2024];35(8):1358-62. Disponible en: https://sci-hub.yncjkj.com/10.1016/j.jcrs.2009.03.035
26. Jareño OM, Pérez PZ, Fernández GK, Castillo PA, Escalona LE, Ruíz RY. Mo-dificaciones en la estructura celular por microscopia confocal en pacientes con queratocono tratados por crosslinking. Rev Cubana Oftalmol [Internet]. 2012 [Ci-tado 29/03/2024];25(2):192-201. Disponible en: https://www.imbiomed.com.mx/articulo.php?id=90011
27. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced crosslinking. J Cataract Re-fract Surg [Internet]. 2003 [Citado 29/03/2024];29(9):1780-5. Disponible en: https://sci-hub.yncjkj.com/10.1016/s0886-3350(03)00407-3
28. Khaw PT, Shah P, Elkington AR. Glaucoma--1: diagnosis. BMJ [Internet]. 2004 [Citado 29/03/2024];328(7431):97-9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314054/
29. Alhayek A, Lu PR. Corneal collagen crosslinking in keratoconus and other eye disease. Int J Ophthalmol [Internet]. 2015 [Citado 29/03/2024]; 8(2):407-18. Dis-ponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413599/
30. Ministerio de Salud Pública. Ley de la Salud Pública [Internet]. La Habana: MINSAP; 2023 [Citado 29/03/2024]. Disponible en: https://www.parlamentocubano.gob.cu/sites/default/files/documento/2023-11/proyecto-de-ley-de-salud-publica_0.pdf
31. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA [Internet]. 2013 [Citado 29/03/2024];310(20):2191-4. Disponible en: https://doi.org/10.1001/jama.2013.281053
32. Jareño OM, Pérez PZ, Castillo PA, Padilla GC, León RY, de los Santos AK. Modificaciones refractivas luego del tratamiento del queratocono con crosslinking corneal en ocho años de evolución. Rev Cubana Oftalmol [Internet]. 2020 [Citado 29/03/2024];33(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21762020000100008&lng=es
33. O'Brart DP, Patel P, Lascaratos G, Wagh VK, Tam C, Lee J, et al. Corneal cross-linking to halt the progression of keratoconus and corneal ectasia: seven-year fol-low-up. Am J Ophthalmol [Internet]. 2015 [Citado 29/03/2024];160(6):1154-63. Dis-ponible en: https://sci-hub.yncjkj.com/10.1016/j.ajo.2015.08.023
34. Meyer JJ, Jordan CA, Patel DV, Gokul A, Dean SJ, Ahmed S, et al. Five‐year results of a prospective, randomised, contralateral eye trial of corneal crosslinking for keratoconus. Clin Exp Ophthalmol [Internet]. 2021 [Citado 29/03/2024];49(6):542-9. Disponible en: https://sci-hub.yncjkj.com/10.1111/ceo.13959
35. Eslami M, Ghaseminejad F, Dubord PJ, Yeung SN, Iovieno A. Delayed topo-graphical and refractive changes following corneal crosslinking for keratoconus. J Clin Med [Internet]. 2022 [Citado 29/03/2024];11(7). Disponible en: https://doi.org/10.3390/jcm11071950
36. Reinprayoon U, Jermjutitham M, Kasetsuwan N. Rate of Cornea Endothelial Cell Loss and Biomechanical Properties in Fuchs' Endothelial Corneal Dystrophy. Frontiers in medicine [Internet]. 2021 [Citado 29/03/2024];8:757959. Disponible en: https://www.frontiersin.org/articles/10.3389/fmed.2021.757959/full
37. Badri S, McHachi A, Alnadhari M, Benhmidoune L, Chakib A, Rachid R, et al. The effects of corneal crosslinking on intraocular pressure measurement in kera-toconus. J Fr Ophtalmol [Internet]. 2019 [Citado 29/03/2024];42(2):166-9. Disponi-ble en: https://sci-hub.yncjkj.com/10.1016/j.jfo.2018.06.009
38. Vinciguerra P, Camesasca FI, Romano MR. Corneal crosslinking and lens opacity. Ophthalmology [Internet]. 2011 [Citado 29/03/2024];118(12):2519. Dispo-nible en: https://sci-hub.yncjkj.com/10.1016/j.ophtha.2011.07.055

