Efficacy of the use of nanoparticles in the administration of drugs against lung cancer
Keywords:
Nanoparticles, drug administration, Medical Oncology, lung cancerAbstract
Introduction: Nanoparticles offer several advantages including specifically targeted drug delivery to improve stability and eradication of toxicity; active and passive drug targeting can be achieved by size reduction, controlled release drug delivery, and a best diagnostic imaging tool for earlier detection of cancer cells.
Objective: To provide researchers with an overview of the current research and technological development of the use of nanoparticles for lung cancer therapy.
Material and Methods: A bibliographic revision study was performed using a methodological design that included the search, selection, synthesis and analysis of articles on the effectiveness of the use of nanoparticles in the administration of drugs against lung cancer. A protocol was developed with methodological guidelines and a bibliographic record for the registration and content analysis of each article. The protocol and the sheet were submitted to validation by five experts selected for their expertise and training in research in Biochemistry, Biotechnology, Biomedicine, Oncology and Pneumopathology.
Results: The growing importance of nanotechnology in the field of biomedical applications has encouraged the development of new nanomaterials with multiple functions. There is a set of notable features of nanoparticle-based detection systems that support their usefulness in the treatment of lung cancer.
Conclusions: Despite the advantages, many challenges remain unresolved, including scale-up issues, economical production, drug pharmacokinetics, and image construction. Issues with nanotoxicity and regulatory guidelines and obstacles need to be resolved.
Downloads
References
1. Tao J, Yuan X, Zheng M, Jiang Y, Chen Y, Zhang F, ET AL. Bibliometric and visualized analysis of cancer nanomedicine from 2013 to 2023. Drug Delivery and Translational Research [Internet]. 2024;14(6): 1708-24. Disponible en: https://link.springer.com/article/10.1007/s13346-023-01485-7
2. Calderón M. Evaluación de nuevas estrategias para el desarrollo de terapias anticancerosas selectivas [Tesis doctoral]. Sevilla: Universidad de Sevilla; 2013 [Citado 02/03/2024]. Disponible en: https://idus.us.es/handle/11441/61254
3. Chiang CL, Cheng MH, Lin CH. From nanoparticles to cancer nanomedicine: old problems with new solutions. Nanomaterials [Internet]. 2021 [Citado 02/03/2024]; 11(7):1727. Disponible en: https://www.mdpi.com/2079-4991/11/7/1727
4. Braga Vieira D, Fernel Gamarra L. Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein [Internet]. 2016 [Citado 02/03/2024]; 14:99-103. Disponible en: https://www.scielo.br/j/eins/a/JRMKQqLVQjqzVN4yWbzrFQk/
5. Ortega-Galindo AS, Díaz Peralta L, Galván Hernández A, Ortega Blake I, Pérez Riascos A, Rojas Aguirre Y. Los liposomas en nanomedicina: del concepto a sus aplicaciones clínicas y tendencias actuales en investigación. Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología [Internet]. 2023 [Citado 02/03/2024]; 16(31). Disponible en: https://www.scielo.br/j/eins/a/JRMKQqLVQjqzVN4yWbzrFQk/
6. Aguirre León JG, Salazar Loera Á, Machado Sulbaran A.C. Nanotecnología: un nuevo panorama para el abordaje del cáncer. Con Evidencia [Internet]. 2024 [Citado 02/03/2024];(1):22-6. Disponible en: https://conevidencia.cucs.udg.mx/index.php/conevidencia/article/view/11
7. Negrín HLV, Torres SEO, Aguirre YR. Explorando las aplicaciones farmacéuticas de las ciclodextrinas: pasado, presente y perspectivas. Materiales Avanzados [Internet]. 2024 [Citado 02/03/2024]; (40): 10-20. Disponible en: https://revista.iim.unam.mx/index.php/materialesa_avanzados/article/view/24
8. Santos CC, Pereira GJV, de Sousa Cunha IA, Lopes J, Rocha MS. Nanomagnetismo no diagnóstico precoce e tratamento do câncer: Uma revisão narrativa. Research, Society and Development 2024; 13(6): e6313645983-e6313645983.
9. Lozano Ocaña Y, Tubón Usca I, Vaca Altamirano G, Tubón Usca G. Métodos de obtención y aplicación de nanopartículas magnéticas en el tratamiento y diagnóstico del cáncer: una revisión. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales [Internet]. 2022 [Citado 02/03/2024]; 46(178):7-26. Disponible en: http://www.scielo.org.co/scielo.php?pid=S0370-39082022000100007
10. Almada M, Luna M, Cabrera MG, Beltrán O, Flores PDM, Mar JAG, et al. Nanopartículas basadas en Quitosano con potenciales aplicaciones en biomedicina. TECNOCIENCIA Chihuahua [Internet]. 2023 [Citado 02/03/2024]; 17(4):e1293-e1293. Disponible en: https://vocero.uach.mx/index.php/tecnociencia/article/view/1293
11. Dávalos RKR, Meza DNS. Nanopartículas en medicamentos y tratamientos. PANAMACANI [Internet]. 2024[Citado 02/03/2024]; 2(3): 25-27. Disponible en: https://revistasacademicas.ucol.mx/index.php/panamacani/article/view/2002
12. Cryer AM, Thorley AJ. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacology & therapeutics [Internet]. 2019 [Citado 02/03/2024]; 198:189-205. Disponible en: https://www.sciencedirect.com/science/article/pii/S0163725819300300
13. Zheng X, Wu Y, Zuo H, Chen W, Wang K. Metal nanoparticles as novel agents for lung cancer diagnosis and therapy. Small [Internet]. 2023 [Citado 02/03/2024];19(18):2206624. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202206624
14. Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. Journal of controlled release [Internet]. 2019 [Citado 02/03/2024]; 295: 250-67. Disponible en: https://www.sciencedirect.com/science/article/pii/S0168365919300276
15. Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. International journal of molecular sciences 2021; 22(16): 8661.
16. Guo QR, Zhang LL, Liu JF, Li Z, Li JJ, Zhou WM, et al. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics. 2021;5(1):73-89.
17. Shende P, Augustine S, Prabhakar B, Gaud RS. Advanced multimodal diagnostic approaches for detection of lung cancer. Expert Rev Mol Diagnostics [Internet]. 2019 [Citado 02/03/2024]; 19:409–17. Disponible en: https://doi.org/10.1080/14737159.2019.1607299
18. Yin W, Pan F, Zhu J, Xu J, González Rivas D, Okumura M, et al. Nanotechnology and nanomedicine: a promising avenue for lung cancer diagnosis and therapy. Engineering [Internet]. 2021 [Citado 02/03/2024]; 7(11): 1577-85. Disponible en: https://www.sciencedirect.com/science/article/pii/S209580992100388X
19. Espinoza JL, Dong LT. Artificial intelligence tools for refining lung cancer screening. J Clin Med [Internet]. 2020 [Citado 02/03/2024]; 9:3860. Disponible en: https://doi.org/10.3390/jcm9123860
20. Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, et al. Magnetic particle imaging: An emerging modality with prospects in diagnosis, targeting and therapy of cancer. Cancers [Internet]. 2021 [Citado 02/03/2024]; 13(21): 5285. Disponible en: https://www.mdpi.com/2072-6694/13/21/5285
21. Kistenev YV, Borisov AV, Vrazhnov DA. Breathomics for lung cancer diagnosis. Multimodal Optical Diagnostics of Cancer. 2020;1: 209-43.
22. McDonough C, Chrisekos J, Tonyushkin A. Tomographic Magnetic Particle Imaging with a Single-Sided Field-Free Line Scanner. EE UU: IEEE Transactions on Biomedical Engineering; 2024.
23. Bulte JW. Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications. Advanced drug delivery reviews [Internet]. 2019 [Citado 02/03/2024];138:293-301. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0169409X18303119
24. Tang X, Wang Z, Wei F, Mu W, Han X. Recent progress of lung cancer diagnosis using nanomaterials. Cryst [Internet]. 2021[Citado 02/03/2024]; 11:24. Disponible en: https://doi.org/10.3390/cryst11010024"10.3390/cryst11010024
25. Yang G, Xiao Z, Tang C, Deng Y, Huang H, He Z. Recent advances in biosensor for detection of lung cancer biomarkers. Biosensors and Bioelectronics. 2019; 141: 111416.
26. Hosu O, Tertis M, Cristea C. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry [Internet]. 2019 [Citado 02/03/2024]; 5(4):55. Disponible en: https://doi.org/10.3390/magnetochemistry5040055"10.3390/magnetochemistry5040055
27. Aydın EB, Aydın M, Sezgintürk MK. Fabrication of a highly sensitive conductive copolymer layer modified immunosensing tool for cytokeratin-19 fragment detection. Microchemical Journal. 2024; 111464.
28. Szymanska B, Lukaszewski Z, Hermanowicz Szamatowicz K, Gorodkiewicz E. An immunosensor for the determination of carcinoembryonic antigen by Surface Plasmon Resonance imaging. Analytical biochemistry 2020; 609: 113964.
29. Qian H, Zhang Y, Xu J, He J, Gao W. Progress and application of circulating tumor cells in non-small cell lung cancer. Molecular Therapy-Oncolytics [Internet]. 2021 [Citado 02/03/2024];22:72-84. Disponible en: https://www.cell.com/molecular-therapy-family/oncology/fulltext/S2372-7705(21)00071-1
30. Fu L, Zheng Y, Li X, Liu X, Lin CT, Karimi-Maleh H. Strategies and applications of graphene and its derivatives-based electrochemical sensors in cancer diagnosis. Molecules [Internet]. 2023 [Citado 02/03/2024]; 28(18):6719. Disponible en: https://www.mdpi.com/1420-3049/28/18/6719
31. Johannsen M, Gneveckow U, Taymoorian K, Cho C, Thiesen B, Scholz R, et al. Termoterapia en cáncer de próstata mediante el uso de nanopartículas magnéticas. Actas Urol Esp [Internet]. 2019 [Citado 02/03/2024]; 31(6):660-7. Disponible en: http://doi.org/10.1016/s0210-4806(07)73703-8
32. Yu F, Choudhury D. Microfluidic bioprinting for organ-on-a-chip models. Drug Discov Today [Internet]. 2019 [Citado 02/03/2024]; 24:1248–57. Disponible en: https://doi.org/10.1016/j.drudis.2019.03.025"10.1016/j.drudis.2019.03.025
33. Sontheimer Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer [Internet]. 2019 [Citado 02/03/2024]; 19:65-81. Disponible en: https://doi.org/10.1038/s41568-018-0104-6
34. Rastogi A, Yadav K, Mishra A, Singh MS, Chaudhary S, Manohar R. Early diagnosis of lung cancer using magnetic nanoparticles-integrated systems. Nanotechnology Reviews [Internet]. 2022 [Citado 02/03/2024]; 11(1), 544-74. Disponible en: https://www.degruyter.com/document/doi/10.1515/ntrev-2022-0032/html
35. Kumari P, Ghosh B, Biswas S. Nanocarriers for Cancer-Targeted Drug Delivery. J Drug Target [Internet]. 2016 [Citado 02/03/2024]; 24: 179-91. Disponible en: https://www.tandfonline.com/doi/abs/10.3109/1061186X.2015.1051049
36. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an Emerging Platform for Cancer Therapy. Nat Nanotechnol. 2007; 2: 751-760.
37. Yang Y, Aw J, Chen K, Liu F, Padmanabhan P, Hou Y. Enzyme-Responsive Multifunctional Magnetic Nanoparticles for Tumor Intracellular Drug Delivery and Imaging. Chem Asian J. 2011; 6: 1381-9.
38. Castellanos Rubio I, Rodrigo I, Olazagoitia Garmendía A, Arriortua O, Gil de Muro I, Garitaonandia JS, et al. Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles. ACS Appl Mater Interfaces. 2020; 12: 27917-29.
39. Chandrasekharan P, Tay ZW, Hensley D, Zhou XY, Fung BK, Colson C, et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: Tracers, hardware, and future medical applications. Theranostics. 2020; 10: 2965-81.
40. Lu Y, Rivera Rodríguez A, Tay ZW, Hensley D, Fung KLB, Colson C, et al. Combining Magnetic Particle Imaging and Magnetic Fluid Hyperthermia for Localized and Image-Guided Treatment Int J Hyperthermia. 2020; 37: 141-54.
41. Cristóbal Cueto P, Rivas García L, Gómez S, Ariaga JMM, Moya EMG. Nanopartículas de sílice mesoporosas como sistema de administración de fármacos contra el cáncer de mama triple negativo. Revista de la Sociedad Española de Materiales. 2022;6 (2): 21.
42. Roblero Bartolón GV, Ramón Gallegos E. Uso de nanopartículas (NP) en la terapia fotodinámica (photodynamic therapy [PDT]) contra el cáncer. Gaceta médica de México. 2015; 151(1): 85-98.
43. Isaza Pierotti ML. Nanopartículas de magnetita como vehículo para liberación controlada de fármacos en terapia contra el cáncer de pulmón. [Tesis Especialidad]. Colombia: UNIANDES; 2019 [Citado 02/03/2024]. Disponible en: https://repositorio.uniandes.edu.co/entities/publication/680d01c1-8742-442e-a6a5-071fe87a87ff
44. Alvizo Báez CA. Expresión de TRAIL para inducir apoptosis en cáncer pulmonar usando un sistema basado en nanopartículas magnéticas y quitosán. [Tesis Doctoral]. Mexico: Universidad Autónoma de Nuevo León; 2016 [Citado 02/03/2024]. Disponible en: http://eprints.uanl.mx/13681/
45. Barbadillo JF. Nuevos vectores de medicamentos de administración vía endovenosa oncóticos: Un caso práctico, el Paclitaxel [Tesis Doctoral]. España: Universidad Complutense; 2018 [Citado 02/03/2024]. Disponible en: http://147.96.70.122/Web/TFG/TFG/Memoria/JAIME%20FERNANDEZ%20BARBADILLO.pdf
46. Rajagopal RA, Krishnaswami V, Maruthamuthu V, Kandasamy R. Functionalized carbon nanomaterials for biomedical imaging. En su: Functionalized Carbon Nanomaterials for Theranostic Applications. Philadelphia: Elsevier; 2023.pp. 353-380.
47. De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. Naunyn-Schmiedeberg's archives of pharmacology. 2024; 397(5):2793-833.
48. Carrasco Esteban E, Domínguez Rullán JA, Barrionuevo Castillo P, Pelari Mici L, Leaman O, Sastre-Gallego S. Current role of nanoparticles in the treatment of lung cancer. Journal of Clinical and Translational Research [Internet]. 2021 [Citado 02/03/2024]; 7(2):140. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177846/
49. Mukherjee A, Paul MK, Mukherjee S. Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers [Internet]. 2019 [Citado 02/03/2024];11. Disponible en: https://www.semanticscholar.org/reader/5fc0eae064eda3c2b4900e8f0f809179685bed23
50. Issaka E, AMUDarko JN. Biomimetic Nanoparticles for Cancer Therapy: A Review of Recent Advances, Applications, and Bottlenecks. Biomedical Materials & Devices [Internet]. 2024 [Citado 02/03/2024]; 1. Disponible en: https://www.semanticscholar.org/paper/Biomimetic-Nanoparticles-for-Cancer-Therapy%3A-A-of-Issaka-AMU-Darko/d0cd44f448405d69f9a02d51f682b4e7400c94b5
51. Joseph JR, Selvakumar K. Bridging the nano-Frontier: revolutionizing lung cancer diagnosis and therapy with nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials. 2024;1: 1-17.
52. Min SH, Le W, Jun CJ, Yan ZS, Guang YX, Tong Z. Design strategy and research progress of multifunctional nanoparticles in lung cancer therapy. Expert opinion on investigational drugs. 2023; 32(8): 723-39.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Habanera de Ciencias Médicas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All the content of this magazine is in Open Access, distributed according to the terms of the Creative Commons Attribution-Noncommercial 4.0 License that allows non-commercial use, distribution and reproduction without restrictions in any medium, provided that the primary source is duly cited.