Influence of rs1801133 polymorphism and homocysteine concentrations on susceptibility to folate-sensitive birth defects
Keywords:
Congenital abnormalities, folic acid deficiency, polymorphism genetic, hyperhomocysteinemiaAbstract
Introduction: Multiple polymorphic variants of the Methylenetetrahydrofolate reductase gene associated with folate-sensitive birth defects have been described; the rs1801133 polymorphism is considered as the most frequent genetic cause of hyperhomocysteinemia.
Objective: To relate maternal plasma homocysteine concentrations and the different genotypes of the rs1801133 polymorphism with the risk to have folate-sensitive birth defects in their offspring.
Material and Methods: An analytical case-control study was conducted in Villa Clara, including 83 mothers with offspring with folate-sensitive birth defects between 2013 and 2018 and an equal number of controls who underwent genotyping of the rs1801131 polymorphism and determination of total homocysteine levels.
Results: The distribution of homocysteine concentrations between case and control mothers was not homogeneous (10.56 μmol/L and 5.34 μmol/L, p=0.000). In mothers with CC genotype the median was 5.28 μmol/L, a figure that was two and three times higher in those with heterozygous genotypes (CT) and homozygous for the minor allele (TT), 11.26 μmol/L and 18.40 μmol/L, respectively. Risk levels were found in three of the 14 mothers with TT genotype (21,43%) and in one heterozygote mother, while 64,29% (9/14) with homozygous TT genotype presented hyperhomocysteinemia and no case was observed among mothers with CC genotype.
Conclusions: Hyperhocysteinemia is a risk factor for folate-sensitive congenital defects. Mothers with TT genotype present higher levels of homocysteine, which, together with folic acid deficiency, are factors related to an increased susceptibility to different folate-sensitive birth defects in their offspring.
Downloads
References
1- Mai C, Isenburg J, Canfield M, Meyer R, Correa A, Alverson C, et al. National population-based estimates for major birth defects, 2010-2014. Birth Defects Res [Internet]. 2020 [Citado 23/01/2025];111(18):1420–35. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31580536/
2- World Health Organization. Congenital disorders [Internet]. Ginebra: WHO; 2023 [Citado 23/01/2025]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/birth-defects
3- Taboada N. Implication of molecular and cellular mechanisms in congenital defects sensitive to folate deficiency. EC Gynaecol [Internet]. 2021 [Citado 23/01/2025];10(6):57–68. Disponible en: https://ecronicon.net/assets/ecgy/pdf/ECGY-10-00621.pdf
4- Murphy M, Westmark C. Folic acid fortification and neural tube defect risk: analysis of the food fortification initiative dataset. Nutrients [Internet]. 2020 [Citado 23/01/2025];12(1):247. Disponible en: https://www.researchgate.net/publication/338692350_Folic_Acid_Fortification_and_Neural_Tube_Defect_Risk_Analysis_of_the_Food_Fortification_Initiative_Dataset
5- Shi H, Yang S, Lin N, Huang P, Yu R, Chen M, et al. Study on maternal SNPs of MTHFR gene and Hcy level related to congenital heart diseases. Pediatr Cardiol [Internet]. 2021 [Citado 23/01/2025];42(1):42–6. Disponible en: https://link.springer.com/article/10.1007/s00246-020-02449-1
6- Taboada N, Herrera M, Ferreira RP, Almaguer LE, Collazo T. Polimorfismo C677T del gen metilenetetrahodrofolato reductasa en madres con descendencia afectada por defectos congénitos folato-sensibles. Rev Cubana Inv Bioméd [Internet]. 2024 [Citado 23/01/2025];43. Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/2771
7- Concepción A, Camayd V, Vento B, Fernández M, Hernández E, Marín P, et al. Reference values of plasma homocysteine in Cuban children and adults. J Lab Med [Internet]. 2020 [Citado 23/01/2025];44(4):191–5. Disponible en: https://www.degruyter.com/document/doi/10.1515/labmed-2019-0195/html
8- Man B, Dunn L. The declaration of Helsinki on medical research involving human subjects: a review of seven revisión. J Nep Heal Res Counc [Internet]. 2020 [Citado 23/01/2025];17(4):548–52. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32001865/
9- Wang L, Wu X, Peng Y, Yang Q, Chen X, Zhu Y, et al. Quantitative analysis of homocysteine in liquid by terahertz spectroscopy. Biomed Opt Express [Internet]. 2020 [Citado 23/01/2025];11(5):2570–7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32499944/
10- Smith A, Refsum H. Homocysteine – from disease biomarker to disease prevention. J Intern Med [Internet]. 2021 [Citado 23/01/2025];290:826–54. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33660358/
11- Vidmar G, Šmid A, Kuželiˇ NK, Trontelj J, Gersak K. Folate insufficiency due to MTHFR deficiency is bypassed by 5-Methyltetrahydrofolate. J Clin Med [Internet]. 2020 [Citado 23/01/2025];9:2836–54. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32887268/
12- Guo Y, Luo R, Corsi DJ, White RR, Smith G, Rodger M, et al. Folic acid supplementation in early pregnancy, homocysteine concentration, and risk of gestational diabetes mellitus. J Obstet Gynaecol Can [Internet]. 2022 [Citado 23/01/2025];44(2):196-199. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35181010/
13- Deb R, Arora I, Samtani R, Garg G, Saksena D, Sharma N, et al. Folic acid, dietary habits, and homocysteine levels in relation to neural tube defects: A case–control study in North India. Birth Defects Res [Internet]. 2018 [Citado 23/01/2025]; 110(14):1148–52. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30114345/
14- Pisek A, McKinney CM, Muktabhant B, Pitiphat W. Maternal micronutrient biomarkers and risk of non-syndromic cleft lip/palate: A case-control study. Oral Dis [Internet]. 2024 [Citado 23/01/2025];22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/39039700/
15- Wahbeh F, Manyama M. The role of Vitamin B12 and genetic risk factors in the etiology of neural tube defects: A systematic review. Int J Dev Neurosci [Internet]. 2021 [Citado 23/01/2025];81(5):386-406. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33851436/
16- Kucha W, Seifu D, Tirsit A, Yigeremu M, Abebe M, Hailu D, et al. Folate, Vitamin B12, and Homocysteine levels in women with neural tube defect-affected pregnancy in Addis Ababa, Ethiopia. Front Nutr [Internet]. 2022 [Citado 23/01/2025]; 9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35464038/
17- Taboada N. Factores epigenéticos involucrados en el origen de defectos congénitos relacionados con la deficiencia materna de ácido fólico y otros micronutrientes. Acta Med Cent [Internet]. 2019 [Citado 23/01/2025]; 13(3):439–54. Disponible en: http://scielo.sld.cu/pdf/amdc/v13n3/2709-7927-amdc-13-03-439.pdf
18- Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet [Internet]. 2025 [Citado 23/01/2025]; (1):7-30. Disponible en: https://pubmed.ncbi.nlm.nih.gov/39134824/
19- Bai B, Wan C, Xiao Z. High homocysteine-thiolactone leads to reduced MENIN protein expression and an impaired DNA damage response: Implications for neural tube defects. Mol Neurobiol [Internet]. 2024 [Citado 23/01/2025]; 61: 7369–7383. Disponible en: https://link.springer.com/article/10.1007/s12035-024-04033-7
20- Bouron A, Fauvarque MO. Genome-wide analysis of genes encoding core components of the ubiquitin system during cerebral cortex development. Mol Br [Internet]. 2022 [Citado 23/01/2025]; 15(72). Disponible en: https://link.springer.com/article/10.1186/s13041-022-00958-z
21- Bufalino A, Ribeiro Paranaíba LM, Nascimento de Aquino S, Martelli-Júnior H, Oliveira Swerts MS, Coletta RD. Maternal polymorphisms in folic acid metabolic genes are associated with nonsyndromic cleft lip and/or palate in the Brazilian population. Birth Defects Res A Clin Mol Teratol [Internet]. 2010 [Citado 23/01/2025];88(11):980-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20890936/
22- Kos BJP, Leemaqz SY, McCormack CD, Andraweera PH, Furness DL, Roberts CT, et al. The association of parental methylenetetrahydrofolate reductase polymorphisms (MTHFR 677C > T and 1298A > C) and fetal loss: a case-control study in South Australia. J Matern Fetal Neonatal Med [Internet]. 2020 [Citado 23/01/2025];33(5):752-757. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30001659/
23- Taboada N, Herrera M, Ferreira RP, Almaguer LE, Collazo T, Gómez M. Association between maternal C677T (Rs1801133) polymorphism and neural tube defects in Villa Clara, Cuba: A population-based study. EC Gynaecol [Internet]. 2023 [Citado 23/01/2025];12(2). Disponible en: https://ecronicon.net/ecgy/association-between-maternal-c677t-rs180113-polymorphism-and-neural-tube-defects-in-Villa-Clara-Cuba-a-population-based.study.
24- Dai C, Fei Y, Li J, Shi Y, Yang X. A novel review of Homocysteine and pregnancy complications. Biomed Res Int [Internet]. 2021 [Citado 23/01/2025];1: 397–411. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34036101/
25- Lee KS, Choi YJ, Cho J, Lee H, Lee H, Park SJ. Environmental and genetic risk factors of congenital anomalies: an umbrella review of systematic reviews and meta-analyses. J Korean Med Sci [Internet]. 2021 [Citado 23/01/2025]; 36(28). Disponible en: https://pubmed.ncbi.nlm.nih.gov/34282604/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Habanera de Ciencias Médicas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All the content of this magazine is in Open Access, distributed according to the terms of the Creative Commons Attribution-Noncommercial 4.0 License that allows non-commercial use, distribution and reproduction without restrictions in any medium, provided that the primary source is duly cited.