Evaluación preclínica de los efectos de la lecitina de soya sobre la composición corporal

Leidys Cala Calviño, Sandra María Casas Gross, Rafael Rodríguez Casero, Humberto Joaquin Morris Quevedo

Texto completo:

XML (English) PDF (English)

Resumen

Introducción: La lecitina de soya se ha convertido en un suplemento dietético de los más utilizados con potencialidades para tratar la obesidad.

Objetivo: Determinar el efecto de la lecitina de soya sobre la composición corporal.

Material y Métodos: Se realizó un estudio de farmacología preclínica experimental en el Laboratorio de Anticuerpos y Biomodelos Experimentales (Labex-cim) y el Laboratorio de Ciencias Básicas de la Universidad de Ciencias Médicas de Santiago de Cuba, en 2019. Se administró lecitina de soja por 30 días, en dosis consideradas como máximas y mínimas a dos grupos experimentales de ratas Wistar, para ser comparados con grupo control que recibió alimentación habitual. Se estimaron variables bioeléctricas e indicadores de masa grasa estableciendo diferencias entre los grupos experimentales mediante la Prueba de Kruskal-Wallis de muestras independientes y considerando el nivel de significación menor del 5 %.

Resultados: El agua corporal total, la masa libre de grasa, el agua extracelular y la grasa corporal total se modificaron de manera significativa en comparación con el control y entre grupos, así como existieron variaciones en el peso de la grasa en los compartimentos principales, incrementándose en el grupo suplementado a dosis mínima y reduciendo en el grupo que recibió dosis máxima del producto. El ángulo de fase mostró reducción en ambos grupos experimentales.

Conclusiones: La lecitina de soya, dependiendo de la dosis, modifica la composición corporal en ratas siendo el ángulo de fase un parámetro apreciable para la evaluación nutricional.

Palabras clave

composición corporal, lecitina de soya, bioimpedancia eléctrica, experimentación preclínica.

Referencias

Martin A. Animal Research that Respects Animal Rights: Extending Requirements for Research with Humans to Animals. Cambridge Quarterly of Healthcare Ethics [Internet]. 2022; 31(1): 59-72. Available from: http://doi.org/10.1017/S0963180121000499

García Almeida JM, García C, Bellido V, Bellido D. New approach to nutrition. Assessment of the patient's nutritional status: function and body composition. Nutr Hosp [Internet]. 2018; 35(suppl3): 1-14. Available from: http://doi.org/10.20960/nh.2027

Bellido D, Carreira J, Bellido V. Evaluation of nutritional status: anthropometry and body composition. In: Ángel Gil. Nutrition Treatise: Human Nutrition in the state of health. Madrid: Panamericana; 2017. pp. 99-132.

Cala Calviño L, Sánchez Hechavarria ME, García Torres DS. Pharmacological aspects of soy lecithin and its possible medical applications. MEDISAN [Internet]. 2017 [Cited 20/04/2021]; 21(1): 83-95. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192017000100010&lng=es

Lemus Rodríguez MZ, Chong Quesada A, Bosch Escobar J. Soy Lecithin Chewable Tablet: From By-Product to Pharmaceutical Product. MEDISAN [Internet]. 2017 [Cited 20/04/2021]; 21(5): 556-63. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192017000500007&lng=es.

Cala Calviño L, Casas Gross S, Rodríguez Casero R, Morris Quevedo H. Effects of soy lecithin on anthropometric parameters in Wistar rats. Rev Cub Farm [Internet]. 2021 [Cited 20/04/2021]; 54 (4). Available from: http://www.revfarmacia.sld.cu/index.php/far/article/view/605

Fernandez I, Giacomino MS, Condori AI, Godoy MF, Pellegrino N, Slobodianik N, et al. Effect of n-3 fatty acid supplementation on the serum lipid profile of rats. Rev chil nutr [Internet]. 2021 Abr; 48(2): 170-8. Available from: http://dx.doi.org/10.4067/S0717-75182021000200170

Bergues Cabrales I, Camué Ciria HM, Bergues Cabrales LE, Verdecia Jarque M, Rubio González T. Equations for the estimation of total body water by the bioelectrical impedance analysis method at 50 kHz. MEDISAN [Internet]. 2019 [Cited 20/04/2021]; 23(5): 906-20. Available from:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192019000500906&lng=es

Bergues Cabrales I, Morales González M, Bergues Cabrales LE, Verdecia Jarque M, Martínez Tassé JP. Validity of the estimation equations for fat-free mass by the bioelectrical impedance method in any population. MEDISAN [Internet]. 2016 [Cited 20/04/2021];20(12): [Aprox. 1 p.]. Available from: http://www.medisan.sld.cu/index.php/san/article/view/464/html

Hudda MT, Nightingale CM, Donin AS, Fewtrell MS, Haroun D, Lum S, et al. Body mass index adjustments to increase the validity of body fatness assessment in UK black African and South Asian children. Int J Obes [Internet]. 2017; 41(7):1048-55. Available from: http://doi.org/10.1038/ijo.2017.75

McCormick-Ell J, Connell N. Laboratory Safety, Biosecurity, and Responsible Animal Use. ILAR J [Internet]. 2019 Aug [Cited 20/04/2021]; 60(1):24–33. Available from: https://academic.oup.com/ilarjournal/advance-article/doi/10.1093/ilar/ilz012/5550511

Núñez Bourón AI, Lara Lafargue A, Rizo Rodríguez R, Mesa Díaz ME, García Álvarez R. Modification of the volume of body fluid compartments in patients treated with corrective surgery for ischemic heart disease. MEDISAN [Internet]. 2017 [Cited 20/04/2021]; 21(1):[Aprox. 1 p.]. Available from: http://www.medisan.sld.cu/index.php/san/article/view/1159/html

Castellanos Jankiewicz AK, Rodríguez Peredo SM, Cardoso Saldaña G, Díaz E, Tejero Barrera ME, Bosque Plata L, et al. Adipose tissue redistribution caused by an early consumption of a high sucrose diet in a rat model. Nutr Hosp [Internet]. 2015; 31(6): 2546-53. Available from: http://doi.org/10.3305/nh.2015.31.6.8935

Neto Angéloco LR, Deminice R, Leme I, Lataro RC, Jordão AA. Bioelectrical impedance analysis and anthropometry for the determination of body composition in rats: effects of high-fat and high-sucrose diets. Rev Nutr [Internet]. 2012; 25(3): 331-9. Available from: http://doi.org/10.1590/S1415-52732012000300003

Pomar CA, Van Nes R, Sánchez J, Picó C, Keijer J, Palou A. Maternal consumption of a cafeteria diet during lactation in rats leads the offspring to a thin-outside-fat-inside phenotype. Int J Obes [Internet]. 2017; 41(8):1279-2017. Available from: http://doi.org/10.1038/ijo.2017.42

Ortega E, Salazar Anguiano J, Ruíz E, Elías D. Use of a Neurofuzzy System for the Determination of Fat Content in Rats from their Bioelectrical Impedance. XXXIX National Congress of Biomedical Engineering, Mérida, Yucatán, September 25-28, 2016 [Internet]. Mexico: SOMIB; 2016. Available from: http://doi.org/10.24254/CNIB.16.28

Marreiros Ferraz AS, Macêdo de Moraes RC, Ribeiro de Sá NA, Teixeira Andrade F, de Carvalho e Martins MC, Marilande Ceccatto V. Use of murinometrics indices and bioelectrical impedance (BIA) in the determination of experimental obesity in oophorectomized rats. Acta Scientiarum Biological Sciences [Internet]. 2016; 38(4):451-6. Available from: http://doi.org/10.4025/actascibiolsci.v38i4.31714

Kumar G, Kasiviswanathan U, Mukherjee S, Kumar Mahto S, Sharma N, Patnaik R. Changes in electrolyte concentrations alter the impedance during ischemia-reperfusion injury in rat brain. Physiol. Meas [Internet]. 2019; 40(10):5004. Available from: http://doi.org/10.1088/1361-6579/ab47ee

Yang L, Dai M, Cao Q, Ding S, Zhao Z, Cao X, et al. Real-time monitoring hypoxia at high altitudes using electrical bioimpedance technique: an animal experiment. J Appl Physiol [Internet]. 2021;130(4): 952-63. Available from: http://doi.org/10.1152/japplphysiol.00712.2020

Rubio Guerra AF, Benítez Maldonado DR, Lozano Nuevo JJ; Arana Pazos KC, Huerta Ramirez S, Narváez Rivera JL. Correlation between epicardial fat thickness and biochemical markers of metabolic risk. Med Clín [Internet]. 2018; 151(6): 236-8. Available from: http://doi.org/10.1016/j.medcli.2018.01.019

Almeida dos Prazeres E, Sabino Pinho CP, Leão Dornelas AP, Rodrigues Galvão I, da Silva DA, Arruda Grande IK. Ratio between visceral and subcutaneous fat as a predictor of cardiometabolic alterations. Rev chil Nutr [Internet]. 2018; 45(1): 28-36. Available from: http://doi.org/10.4067/s071775182018000100028

Li D, Ikaga R, Yamazaki T. Soya protein β-conglycinin ameliorates fatty liver and obesity in diet-induced obese mice through the down-regulation of PPARγ. Br J Nutr [Internet]. 2018;119 (11):1220-32. Available from: http://doi.org/10.1017/S0007114518000739

Mohammed AS, Waleed KL. Protective role of soybean lecithin in reducing hypercholesterolemia and DNA fragmentation inducing by high cholesterol in adult male rats. Kufa Journal for Veterinary Medical Sciences [Internet]. 2018; [Cited 20/04/2021]; 9(1):35-45. Available from: https://www.iasj.net/iasj/download/4d7c6d94d5683549



Añadir comentario

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.