Preclinical evaluation of the effects of soy lecithin on body composition

Authors

Keywords:

body composition, soy lecithin, electrical bioimpedance, preclinical experimentation.

Abstract

Introduction: Soy lecithin has become one of the most widely used dietary supplements with potential to treat obesity.

Objective: To determine the effect of soy lecithin on body composition.

Material and Methods: An experimental preclinical pharmacology study was carried out in the Laboratory of Antibodies and Experimental Biomodels (Labex-cim) and the Basic Sciences Laboratory of the University of Medical Sciences of Santiago de Cuba in 2019. Soy lecithin was administered for 30 days, in doses considered as maximum and minimum to two experimental groups of Wistar rats, to be compared with the control group that received regular feeding. Bioelectric variables and indicators of fat mass were estimated by establishing differences between the experimental groups using the Kruskal-Wallis test of independent samples and considering the level of significance less than 5 %.

Results: Total body water, fat-free mass, extracellular water, and total body fat changed significantly compared to the control and between groups; also, there were variations in fat weight in the main compartments, increasing in the group supplemented at the minimum dose and reducing in the group that received the maximum dose of the product. The phase angle showed reduction in both experimental groups.

Conclusions: Soy lecithin, depending on the dose, modifies the body composition in rats, the phase angle being an appreciable parameter for nutritional evaluation.

Downloads

Download data is not yet available.

Author Biography

Leidys Cala Calviño, Universidad de Ciencias Médicas de Santiago de Cuba. Santiago de Cuba.

Especialista en MGI yFarmacologia.MSc en MNT

References

1. Martin A. Animal Research that Respects Animal Rights: Extending Requirements for Research with Humans to Animals. Cambridge Quarterly of Healthcare Ethics [Internet]. 2022; 31(1): 59-72. Available from: http://doi.org/10.1017/S0963180121000499

2. García Almeida JM, García C, Bellido V, Bellido D. New approach to nutrition. Assessment of the patient's nutritional status: function and body composition. Nutr Hosp [Internet]. 2018; 35(suppl3): 1-14. Available from: http://doi.org/10.20960/nh.2027

3. Bellido D, Carreira J, Bellido V. Evaluation of nutritional status: anthropometry and body composition. In: Ángel Gil. Nutrition Treatise: Human Nutrition in the state of health. Madrid: Panamericana; 2017. pp. 99-132.

4. Cala Calviño L, Sánchez Hechavarria ME, García Torres DS. Pharmacological aspects of soy lecithin and its possible medical applications. MEDISAN [Internet]. 2017 [Cited 20/04/2021]; 21(1): 83-95. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192017000100010&lng=es

5. Lemus Rodríguez MZ, Chong Quesada A, Bosch Escobar J. Soy Lecithin Chewable Tablet: From By-Product to Pharmaceutical Product. MEDISAN [Internet]. 2017 [Cited 20/04/2021]; 21(5): 556-63. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192017000500007&lng=es.

6. Cala Calviño L, Casas Gross S, Rodríguez Casero R, Morris Quevedo H. Effects of soy lecithin on anthropometric parameters in Wistar rats. Rev Cub Farm [Internet]. 2021 [Cited 20/04/2021]; 54 (4). Available from: http://www.revfarmacia.sld.cu/index.php/far/article/view/605

7. Fernandez I, Giacomino MS, Condori AI, Godoy MF, Pellegrino N, Slobodianik N, et al. Effect of n-3 fatty acid supplementation on the serum lipid profile of rats. Rev chil nutr [Internet]. 2021 Abr; 48(2): 170-8. Available from: http://dx.doi.org/10.4067/S0717-75182021000200170

8. Bergues Cabrales I, Camué Ciria HM, Bergues Cabrales LE, Verdecia Jarque M, Rubio González T. Equations for the estimation of total body water by the bioelectrical impedance analysis method at 50 kHz. MEDISAN [Internet]. 2019 [Cited 20/04/2021]; 23(5): 906-20. Available from:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192019000500906&lng=es

9. Bergues Cabrales I, Morales González M, Bergues Cabrales LE, Verdecia Jarque M, Martínez Tassé JP. Validity of the estimation equations for fat-free mass by the bioelectrical impedance method in any population. MEDISAN [Internet]. 2016 [Cited 20/04/2021];20(12): [Aprox. 1 p.]. Available from: http://www.medisan.sld.cu/index.php/san/article/view/464/html

10. Hudda MT, Nightingale CM, Donin AS, Fewtrell MS, Haroun D, Lum S, et al. Body mass index adjustments to increase the validity of body fatness assessment in UK black African and South Asian children. Int J Obes [Internet]. 2017; 41(7):1048-55. Available from: http://doi.org/10.1038/ijo.2017.75

11. McCormick-Ell J, Connell N. Laboratory Safety, Biosecurity, and Responsible Animal Use. ILAR J [Internet]. 2019 Aug [Cited 20/04/2021]; 60(1):24–33. Available from: https://academic.oup.com/ilarjournal/advance-article/doi/10.1093/ilar/ilz012/5550511

12. Núñez Bourón AI, Lara Lafargue A, Rizo Rodríguez R, Mesa Díaz ME, García Álvarez R. Modification of the volume of body fluid compartments in patients treated with corrective surgery for ischemic heart disease. MEDISAN [Internet]. 2017 [Cited 20/04/2021]; 21(1):[Aprox. 1 p.]. Available from: http://www.medisan.sld.cu/index.php/san/article/view/1159/html

13. Castellanos Jankiewicz AK, Rodríguez Peredo SM, Cardoso Saldaña G, Díaz E, Tejero Barrera ME, Bosque Plata L, et al. Adipose tissue redistribution caused by an early consumption of a high sucrose diet in a rat model. Nutr Hosp [Internet]. 2015; 31(6): 2546-53. Available from: http://doi.org/10.3305/nh.2015.31.6.8935

14. Neto Angéloco LR, Deminice R, Leme I, Lataro RC, Jordão AA. Bioelectrical impedance analysis and anthropometry for the determination of body composition in rats: effects of high-fat and high-sucrose diets. Rev Nutr [Internet]. 2012; 25(3): 331-9. Available from: http://doi.org/10.1590/S1415-52732012000300003

15. Pomar CA, Van Nes R, Sánchez J, Picó C, Keijer J, Palou A. Maternal consumption of a cafeteria diet during lactation in rats leads the offspring to a thin-outside-fat-inside phenotype. Int J Obes [Internet]. 2017; 41(8):1279-2017. Available from: http://doi.org/10.1038/ijo.2017.42

16. Ortega E, Salazar Anguiano J, Ruíz E, Elías D. Use of a Neurofuzzy System for the Determination of Fat Content in Rats from their Bioelectrical Impedance. XXXIX National Congress of Biomedical Engineering, Mérida, Yucatán, September 25-28, 2016 [Internet]. Mexico: SOMIB; 2016. Available from: http://doi.org/10.24254/CNIB.16.28

17. Marreiros Ferraz AS, Macêdo de Moraes RC, Ribeiro de Sá NA, Teixeira Andrade F, de Carvalho e Martins MC, Marilande Ceccatto V. Use of murinometrics indices and bioelectrical impedance (BIA) in the determination of experimental obesity in oophorectomized rats. Acta Scientiarum Biological Sciences [Internet]. 2016; 38(4):451-6. Available from: http://doi.org/10.4025/actascibiolsci.v38i4.31714

18. Kumar G, Kasiviswanathan U, Mukherjee S, Kumar Mahto S, Sharma N, Patnaik R. Changes in electrolyte concentrations alter the impedance during ischemia-reperfusion injury in rat brain. Physiol. Meas [Internet]. 2019; 40(10):5004. Available from: http://doi.org/10.1088/1361-6579/ab47ee

19. Yang L, Dai M, Cao Q, Ding S, Zhao Z, Cao X, et al. Real-time monitoring hypoxia at high altitudes using electrical bioimpedance technique: an animal experiment. J Appl Physiol [Internet]. 2021;130(4): 952-63. Available from: http://doi.org/10.1152/japplphysiol.00712.2020

20. Rubio Guerra AF, Benítez Maldonado DR, Lozano Nuevo JJ; Arana Pazos KC, Huerta Ramirez S, Narváez Rivera JL. Correlation between epicardial fat thickness and biochemical markers of metabolic risk. Med Clín [Internet]. 2018; 151(6): 236-8. Available from: http://doi.org/10.1016/j.medcli.2018.01.019

21. Almeida dos Prazeres E, Sabino Pinho CP, Leão Dornelas AP, Rodrigues Galvão I, da Silva DA, Arruda Grande IK. Ratio between visceral and subcutaneous fat as a predictor of cardiometabolic alterations. Rev chil Nutr [Internet]. 2018; 45(1): 28-36. Available from: http://doi.org/10.4067/s071775182018000100028

22. Li D, Ikaga R, Yamazaki T. Soya protein β-conglycinin ameliorates fatty liver and obesity in diet-induced obese mice through the down-regulation of PPARγ. Br J Nutr [Internet]. 2018;119 (11):1220-32. Available from: http://doi.org/10.1017/S0007114518000739

23. Mohammed AS, Waleed KL. Protective role of soybean lecithin in reducing hypercholesterolemia and DNA fragmentation inducing by high cholesterol in adult male rats. Kufa Journal for Veterinary Medical Sciences [Internet]. 2018; [Cited 20/04/2021]; 9(1):35-45. Available from: https://www.iasj.net/iasj/download/4d7c6d94d5683549

Downloads

Published

2023-06-06

How to Cite

1.
Cala Calviño L, Casas Gross SM, Rodríguez Casero R, Morris Quevedo HJ. Preclinical evaluation of the effects of soy lecithin on body composition. Rev haban cienc méd [Internet]. 2023 Jun. 6 [cited 2025 Jul. 1];22(1):e4634. Available from: https://revhabanera.sld.cu/index.php/rhab/article/view/4634

Issue

Section

Biomedical Basic Sciences