Nanopartículas en odontología: una revisión sistemática

Verónica Alejandra Guamán Hernández, Carlos Alban, Víctor Crespo, Carlos Espinoza

Texto completo:

PDF

Resumen

Introducción: La nano-tecnología ha revolucionado la odontología en las últimas décadas, ofreciendo avances significativos en diagnóstico y tratamiento. Persisten lagunas de conocimiento en Latinoamérica sobre el uso de nanopartículas en biomateriales dentales, justificando una revisión sistemática.

Objetivo: Analizar el uso de nanopartículas en odontología, investigando el material más utilizado, métodos de síntesis, afecciones dentales tratadas, bacterias combatidas y usos específicos.

Material y Métodos: Se realizó una revisión sistemática siguiendo la metodología PRISMA 2020, evaluando criterios de elegibilidad en 232 estudios obtenidos de Scopus. Se categorizaron, evaluaron riesgos de sesgo y sintetizaron los datos para responder a las preguntas de investigación.

Resultados: De 112 estudios identificados, se destacaron materiales como la plata y el óxido de zinc, con métodos de síntesis variados. Las nanopartículas mostraron eficacia en el tratamiento de caries y enfermedades periodontales, combatiendo bacterias como Streptococcus mutans y Staphylococcus aureus.

Conclusiones: La integración de nanopartículas en odontología ha demostrado ser prometedora, mejorando la prevención y tratamiento de enfermedades dentales. Se requiere una mayor investigación para abordar limitaciones y optimizar su aplicación clínica.

Palabras clave

Nanopartículas, Odontología, Síntesis, Enfermedades dentales

Referencias

Jandt KD, Watts DC. Nanotechnology in dentistry: present and future perspectives on dental nanomaterials. Dent Mater [Internet]. 2020 [Citado 13/05/2024];36(11):1365-78. Disponible en: https://doi.org/10.1016/j.dental.2020.08.006

Barot T, Rawtani D, Kulkarni P. Nanotechnology-based materials as emerging trends for dental applications. Rev Adv Mater Sci [Internet]. 2021 [Citado 13/05/2024];60(1):173-89. Disponible en: https://doi.org/10.1515/rams-2020-0052

Dakhale R, Paul P, Achanta A, Ahuja KP, Meshram M. Nanotechnology innovations transforming oral health care and dentistry: a review. Cureus [Internet]. 2023 [Citado 13/05/2024];15(10):e46423. Disponible en: https://doi.org/10.7759/cureus.46423

Nambiar P, Madhu PP, Reche A, Moharil S. Nanoparticles in Dentistry ; a review. International Arab Journal of Dentistry [Internet]. 2023 [Citado 13/05/2024];14(2). Disponible en: https://digitalcommons.aaru.edu.jo/iajd/vol14/iss2/19

Díaz Castro L. Aplicaciones contemporáneas de nanomateriales en ciencias odontológicas [Tesis de Especialidad]. México: Universidad Autonoma del Estado de México; 2023 [Citado 10/05/2024]. Disponible en: http://ri.uaemex.mx/handle/20.500.11799/139083

Aati S, Chauhan A, Shrestha B, Rajan SM, Aati H, Fawzy A. Development of 3D printed dental resin nanocomposite with graphene nanoplatelets enhanced mechanical properties and induced drug-free antimicrobial activity. Dent Mater [Internet]. 2022 [Citado 13/05/2024]; 38(12):1921-33. Disponible en: https://doi.org/10.1016/j.dental.2022.10.001

Reddy JR, Kannan KP, Sankaran K, Rengasamy G, Priya VV, Sathishkumar P. Eradication of dental pathogens using flavonoid rutin mediated silver-selenium nanoparticles. Inorg Chem Commun [Internet]. 2023 [Citado 13/05/2024];157:111391. Disponible en: https://doi.org/10.1016/j.inoche.2023.111391

Hamad AM, Mahmood Atiyea Q. In vitro study of the effect of zinc oxide nanoparticles on Streptococcus mutans isolated from human dental caries. J Phys [Internet]. 1 de mayo de 2021 [Citado 13/05/2024];1879(2):022041. Disponible en: https://doi.org/10.1088/1742-6596/1879/2/022041

Bai X, Lin C, Wang Y, Ma J, Wang X, Yao X, Tang B. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent Mater [Internet]. 2020 [Citado 13/05/2024];36(6):794-807. Disponible en: https://doi.org/10.1016/j.dental.2020.03.026

Yepes-Nuñez JJ, Urrútia G, Romero-García M, Alonso-Fernández S. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Rev Espanola Cardiol [Internet]. 2021 [Citado 13/05/2024];74(9):790-9. Disponible en: https://doi.org/10.1016/j.recesp.2021.06.016

Dadkan S, Khakbiz M, Ghazanfari L, Chen M, Lee KB. Evaluation of antibacterial and mechanical features of dental adhesives containing colloidal gold nanoparticles. J Mol Liq [Internet]. 2022 [Citado 13/05/2024]:119824. Disponible en: https://doi.org/10.1016/j.molliq.2022.119824

Devilakshmi M, Ramasubburayan R. Green synthesis of TiO2 nanoparticles using Terminalia chebula and its potent antibiofilm activity against dental caries-associated bacterium Streptococcus mutans. Biocatal Agric Biotechnol [Internet]. 2023 [Citado 13/05/2024];54:102953. Disponible en: https://doi.org/10.1016/j.bcab.2023.102953

Zhao Y, Xu J, Wang Q, Xie ZH, Munroe P. (TiZrNbTaMo) N nanocomposite coatings embedded with silver nanoparticles: imparting mechanical, osteogenic and antibacterial traits to dental implants. J Alloy Compd [Internet]. 2023 [Citado 13/05/2024]:172824. Disponible en: https://doi.org/10.1016/j.jallcom.2023.172824

Fernández-Arias M, Boutinguiza M, Del Val J, Covarrubias C, Bastias F, Gómez L, et al. Copper nanoparticles obtained by laser ablation in liquids as bactericidal agent for dental applications. Appl Surf Sci [Internet]. 2020 [Citado 13/05/2024];507:145032. Disponible en: https://doi.org/10.1016/j.apsusc.2019.145032

Wang Y, Ding Y, Deng J, Nie R, Meng X. Antibacterial one-step self-etching dental adhesive with silver nanoparticles synthesized in situ. J Dent [Internet]. 2023 [Citado 13/05/2024];129:104411. Disponible en: https://doi.org/10.1016/j.jdent.2023.104411

Ortiz-Magdaleno M, Sánchez-Vargas L, Gardea-Contreras D, Campos-Ibarra V, Pozos-Guillén A, Márquez-Preciado R. Antibiofilm properties of silver nanoparticles incorporated into polymethyl methacrylate used for dental applications. Bio Med Mater Eng [Internet]. 2023 [Citado 13/05/2024]:1-17. Disponible en: https://doi.org/10.3233/bme-222513

Takamiya AS, Monteiro DR, Gorup LF, Silva EA, de Camargo ER, Gomes-Filho JE, et al. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Mater Sci Eng [Internet]. 2021 [Citado 13/05/2024];118:111341. Disponible en: https://doi.org/10.1016/j.msec.2020.111341

Alcudia A, Begines B, Rodriguez-Lejarraga P, Greyer V, Godinho VC, Pajuelo E, et al. Development of porous silver nanoparticle/polycaprolactone/polyvinyl alcohol coatings for prophylaxis in titanium interconnected samples for dental implants. Colloid Interface Sci Commun [Internet]. 2022 [Citado 13/05/2024];48:100621. Disponible en: https://doi.org/10.1016/j.colcom.2022.100621

Ramyaa SK, Subitha P, Srinivasan N, Ramachandran M, Shoba N. Fabrication of dexamethasone-silver nanoparticles entrapped dendrimer collagen matrix nanoparticles for dental applications. Biointerface Res Appl Chem [Internet]. 2021 [Citado 13/05/2024];11(6):14935-55. Disponible en: https://doi.org/10.33263/briac116.1493514955

Senthil R, Çakır S. Nano apatite growth on demineralized bone matrix capped with curcumin and silver nanoparticles: dental implant mechanical stability and optimal cell growth analysis. J Oral Biosci [Internet]. 2023 [Citado 13/05/2024]; ;66(1):232-40. Disponible en: https://doi.org/10.1016/j.job.2023.12.004

Khan AS, Alhamdan Y, Alibrahim H, Almulhim KS, Nawaz M, Ahmed SZ, et al. Analyses of experimental dental adhesives based on zirconia/silver phosphate nanoparticles. Polymers [Internet]. 2023 [Citado 13/05/2024];15(12):2614. Disponible en: https://doi.org/10.3390/polym15122614

Gaikwad S, Torane R, Parthibavarman M. Cassia fistula–assisted green synthesis, characterization and their antimicrobial activity of zinc oxide zno nanomaterial’s an intracanal microbial agent on oral dental caries. Nanotechnol Russ [Internet]. 2020 [Citado 13/05/2024];15(11-12):760-9. Disponible en: https://doi.org/10.1134/s199507802006021x

Javed R, Rais F, Kaleem M, Jamil B, Ahmad MA, Yu T,et al. Chitosan capping of CuO nanoparticles: facile chemical preparation, biological analysis, and applications in dentistry. Int J Biol Macromol [Internet]. 2020 [Citado 13/05/2024]; 167:1452-1467. Disponible en: https://doi.org/10.1016/j.ijbiomac.2020.11.099

Tanweer T, Rana NF, Saleem I, Shafique I, Alshahrani SM, Almukhlifi HA, et al. Dental composites with magnesium doped zinc oxide nanoparticles prevent secondary caries in the alloxan-induced diabetic model. Int J Mol Sci [Internet]. 2022 [Citado 13/05/2024];23(24):15926. Disponible en: https://doi.org/10.3390/ijms232415926

Shoorgashti R, Havakhah S, Nowrooz S, Ghadamgahi B, Mehrara R, Oroojalian F. Evaluation of the antibacterial and cytotoxic activities of Ag/ZnO nanoparticles loaded polycaprolactone/chitosan composites for dental applications. Nanomedicina J [Internet]. 2023 [Citado 13/05/2024];10(1):68-76. Disponible en: https://nmj.mums.ac.ir/article_21614.html

Alkhazaleh A, Elfagih S, Chakka LR, Armstrong SR, Comnick CL, Qian F,et al. Development of proanthocyanidin-loaded mesoporous silica nanoparticles for improving dental adhesion. Mol Pharm [Internet]. 2022 [Citado 13/05/2024]; ;19(12):4675-84. Disponible en: https://doi.org/10.1021/acs.molpharmaceut.2c00728

Larissa P, Gambrill B, de Carvalho RD, Picolo MZ, Cavalli V, Boaro LC,et al. Development, characterization and antimicrobial activity of multilayer silica nanoparticles with chlorhexidine incorporated into dental composites. Dent Mater [Internet]. 2023 [Citado 13/05/2024]; 39(5):469-77. Disponible en: https://doi.org/10.1016/j.dental.2023.03.005

Esteban Florez FL, Trofimov AA, Ievlev A, Qian S, Rondinone AJ, Khajotia SS. Advanced characterization of surface-modified nanoparticles and nanofilled antibacterial dental adhesive resins. Sci Rep [Internet]. 2020 [Citado 13/05/2024];10(1). Disponible en: https://doi.org/10.1038/s41598-020-66819-8

Baghi S, Solhmirzaei R, Bagherian F, Mortezagholi B, Sarkisians E, Ghadimi S. An assay on the antibacterial performance of Co doped ZnO nanoparticles in dental microbes. Nanomed Researcj J [Internet]. 2023 [Citado 13/05/2024];8(2):210-7. Disponible en: https://www.nanomedicine-rj.com/article_705363.html

Ning Z, Chen K, Zheng J, Yang D, Zhou S, Zhou Z. Biomimetic Fe‐hydroxyapatite nanoparticle‐reinforced bisphenol A‐glycol methacrylate/triethyleneglycol‐dimethacrylate resins for dental restorative application. J Appl Polym Sci [Internet]. 2021 [Citado 13/05/2024];139(15):51956. Disponible en: https://doi.org/10.1002/app.51956

Jardim RN, Rocha AA, Rossi AM, de Almeida Neves A, Portela MB, Lopes RT,et al. Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles. J Mech Behav Biomed Mater [Internet]. 2020 [Citado 13/05/2024];109:103817. Disponible en: https://doi.org/10.1016/j.jmbbm.2020.103817

Hassan ZJ, Hamid MK, Ahmed ME. Synthesized zinc oxide nanoparticles by the precipitation method on streptococcus spp from dental carries and cytotoxicity assay. Int J Drug Deliv Technol [Internet]. 2022 [Citado 13/05/2024];12(03):1327-30. Disponible en: https://doi.org/10.25258/ijddt.12.3.65

Abd Ali MA, Shareef AA. Antibacterial activity of silver nanoparticles derived from extracellular extract of enterococcus aerogenes against dental disease bacteria isolated. Regen Eng Transl Med [Internet]. 2023 [Citado 13/05/2024];10(9). Disponible en: https://doi.org/10.1007/s40883-023-00304-2

Rodrigues MC, Rolim WR, Viana MM, Souza TR, Gonçalves F, Tanaka CJ, et al. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent [Internet]. 2020 [Citado 13/05/2024];96:103327. Disponible en: https://doi.org/10.1016/j.jdent.2020.103327

Al-Ansari MM, Al-Dahmash ND, Ranjitsingh AJ. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J Infect Public Health [Internet]. 2021 [Citado 13/05/2024];14(3):324-30. Disponible en: https://doi.org/10.1016/j.jiph.2020.12.016

Vega-Jiménez AL, González-Alva P, Rodríguez-Hernández AP, Vázquez-Olmos AR, Paz-Díaz B. Oxide nanoparticles based in magnesium as a potential dental tool to inhibit bacterial activity and promote osteoblast viability. Dent Mater J [Internet]. 2024 [Citado 13/05/2024];43(1):11-19. Disponible en: https://doi.org/10.4012/dmj.2023-041

Chuang YC, Chang CC, Yang F, Simon M, Rafailovich M. TiO2 nanoparticles synergize with substrate mechanics to improve dental pulp stem cells proliferation and differentiation. Mater Sci Eng [Internet]. Enero de 2021 [Citado 13/05/2024];118:111366. Disponible en: https://doi.org/10.1016/j.msec.2020.111366

Zhang M, Liu X, Xie Y, Zhang Q, Zhang W, Jiang X. Biological safe gold nanoparticle-modified dental aligner prevents the porphyromonas gingivalis biofilm formation. ACS Omega [Internet]. 2020 [Citado 13/05/2024];5(30):18685-92. Disponible en: https://doi.org/10.1021/acsomega.0c01532

Hossain N, Chowdhury DM, Hossain A, Ahmed MS, Rana MM, Sultana S. Synthesis and characterization of Alocasia indica infused silver nanoparticles for dental implant applications. Chem Phys Impact [Internet]. 2023 [Citado 13/05/2024];6:100239. Disponible en: https://doi.org/10.1016/j.chphi.2023.100239

Mansoor A, Khan MT, Mehmood M, Khurshid Z, Ali MI, Jamal A. Synthesis and characterization of titanium oxide nanoparticles with a novel biogenic process for dental application. Nanomaterials [Internet]. 2022 [Citado 13/05/2024];12(7):1078. Disponible en: https://doi.org/10.3390/nano12071078

Naguib G, Maghrabi AA, Mira AI, Mously HA, Hajjaj M, Hamed MT. Influence of inorganic nanoparticles on dental materials’ mechanical properties. A narrative review. BMC Oral Health [Internet]. 2023 [Citado 13/05/2024];23(1). Disponible en: https://doi.org/10.1186/s12903-023-03652-1

Saygi KO, Bayram HM, Bayram E. Green synthesis of silver nanoparticles using artichoke flower petals and application in endodontic dentistry. Biomass Convers Biorefinery [Internet]. 2022 [Citado 13/05/2024];14(4):1-9. Disponible en: https://doi.org/10.1007/s13399-022-02857-8

Klein W, Ismail E, Maboza E, Hussein AA, Adam RZ. Green-Synthesized silver nanoparticles: antifungal and cytotoxic potential for further dental applications. J Funct Biomater [Internet]. 2023 [Citado 13/05/2024];14(7):379. Disponible en: https://doi.org/10.3390/jfb14070379

Thyagarajan R, Narendrakumar G, Rameshkumar V, Varshiney M. Green synthesis of Zirconia nanoparticles based on ginger root extract: optimization of reaction conditions, application in dentistry. Res J Pharm Technol [Internet]. 2022 [Citado 21/05/2024]:5314-20. Disponible en: https://doi.org/10.52711/0974-360x.2022.00895

Bukovinszky K, Szalóki M, Csarnovics I, Bonyár A, Petrik P, Kalas B, et al. Optimization of plasmonic gold nanoparticle concentration in green LED light active dental photopolymer. Polymers [Internet]. 2021 [Citado 13/05/2024];13(2):275. Disponible en: https://doi.org/10.3390/polym13020275

Jiménez-Ramírez AJ, Martínez-Martínez RE, Ayala-Herrera JL, Zaragoza-Contreras EA, Domínguez-Pérez RA, Reyes-López SY, et al. Antimicrobial activity of silver nanoparticles against clinical biofilms from patients with and without dental caries. J Nanomater [Internet]. 2021 [Citado 13/05/2024];2021:1-13. Disponible en: https://doi.org/10.1155/2021/5587455

Al-Ansari MM, Al-Dahmash ND, Ranjitsingh AJ. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J Infect Public Health [Internet]. 2021 [Citado 13/05/2024];14(3):324-30. Disponible en: https://doi.org/10.1016/j.jiph.2020.12.016

Beketova A, Tzanakakis EG, Vouvoudi E, Anastasiadis K, Rigos AE, Pandoleon P, et al. Zirconia nanoparticles as reinforcing agents for contemporary dental luting cements: physicochemical properties and shear bond strength to monolithic zirconia. Int J Mol Sci [Internet]. 2023 [Citado 13/05/2024];24(3):2067. Disponible en: https://doi.org/10.3390/ijms24032067



Añadir comentario

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.