Evaluation of experimental immunotherapeutic formulations in the hybrid murine model of Graft-versus-Host Reaction
Keywords:
Immunomodulators, Cochleate, Immunotherapy, Graft-Versus-Host Disease (GVHD), Murine model, Hematopoietic Stem Cell Transplants (HSCT), cytokines.Abstract
Introduction: Graft-versus-host disease is the most frequent complication of Hematopoietic Stem Cell Transplants and all transplants containing allogeneic immunocompetent cells; 100% of patients suffer from this complication and about 30% die for this particular cause. A high proportion of cases are steroid-refractory; likewise, other modern immunosuppressive measures fail. In the fields of Immunotherapy and Vaccinology, there is also a worrying shortage of powerful, effective, safe and broad spectrum immunomodulators of biological origin. There is a hybrid murine model of great methodological utility for experimental studies.
Objective: To evaluate two novel formulations of biotechnological origin: an immunopotentiator formulation and an immunosuppressive one, which were developed as cochleates.
Material and Methods: The formulations assayed by Electron Microscopy and RT-PCR were characterized as nanoparticles and for their capacity to regulate lymphokine mRNA expression profile, respectively. The immunomodulatory character was evaluated in vivo using Graft-versus-host disease in (CBAxC57BL) F1 hybrid mice.
Results: Starting from the proteoliposomes derived from Neisseria meningitides, two cochleate formulations were obtained, both with particle diameters below 100 nm. Formulation 1 showed a proinflammatory profile with potent capacity to increase IFNγ and TNFα, and potentiated the Spleen Index up to 2.05 in the GVDH model with p = 0.0002. Formulation 2 showed a suppressor/regulatory profile with potent capacity to increase IL-10 and TGFβ and suppress the production of TNFα. In the model used, this formulation suppressed the Spleen Index in a dose-dependent manner with high statistical significance. The known safety profile and absence of reactogenicity of both formulations was corroborated.
Conclusions: Both formulations have potential application in the fields of GVHD therapy and other pathologies as well as in Vaccinology. The results obtained in the present work suggest the usefulness to continue with the pharmaceutical development and complete the preclinical studies of both formulations.Downloads
References
1. Appelbaum, FR. Haematopoietic cell transplantation as immunotherapy. Nature 2001; 411, 385–389 .doi:10.1038/35077251
2. Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol. 2007; 25:139–170.DOI:10.1146/annurev.immunol.25.022106.141606.
3. Ferrara JL, Reddy P. Pathophysiology of graft-versus-host disease. Semin Hematol; 2006 Jan;43(1):3-10. DOI:10.1053/j.seminhematol.2005.09.001
4. Zhang L, Chu J, Yu J, Wei W. Cellular and molecular mechanisms in graft-versus-host disease. J Leukoc Biol (2016) J Leukoc Biol. 2016 Feb;99(2):279-8799(2):279–87. doi: 10.1189/jlb.4RU0615-254RR.]
5. Deeg HJ. How I treat refractory acute GVHD. Blood. 2007;109:4119–4126. doi: 10.1182/blood-2006-12-041889.
6. Lee SJ. New approaches for preventing and treating chronic graft-versus-host disease. Blood. 2005;105:4200–4206. DOI:10.1182/blood-2004-10-4023
7. Kröger N, Solano C, Wolschke C, Bandini G, Patriarca F, Pini M et al, Antilymphocyte Globulin for Prevention of Chronic Graft-versus-Host Disease. N Engl J Med. 2016;374(1):43.
8. Jung JW, Lee YJ, Yoon SC, et al. Long-term result of maintenance treatment with tacrolimus ointment in chronic ocular graft-versus-host disease. Am J Ophthalmol 2015; 159:519.
9. Neumann T, Schneidewind L, Weigel M, Plis A, VaizianR, Schmidt CA, KrügerW.. Ruxolitinib for Therapy of Graft-versus-Host Disease. BioMed Research International.2019; 1-5 p.://doi.org/10.1155/2019/8163780
10. Koreth J, Kim HT, Jones KT, et al. Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood 2016; 128:130.
11. Zhang L, Yu J, Wei W. Advance in Targeted Immunotherapy for Graft-Versus-Host Disease. Front Immunol. 2018 May 16;9:1087. doi: 10.3389/fimmu.2018.01087.
12. Schroeder MA, DiPersio JF. Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech. 2011 May; 4(3): 318–333.doi: 10.1242/dmm.006668: 10.1242/dmm.006668.
13. Niederwieser D, Baldomero H, Szer J, Gratwohl M, Aljurf M, Atsuta Y,et al, Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey. Bone Marrow Transplant. 2016 Jun; 51(6):778-85. doi: 10.1038/bmt.2016.18.
14. Arai S, Pidala J, Pusic I, et al. A Randomized Phase II Crossover Study of Imatinib or Rituximab for Cutaneous Sclerosis after Hematopoietic Cell Transplantation. Clin Cancer Res 2016; 22:319.
15. Rodrigues KS, Oliveira-Ribeiro C, Fiuza-Gomes SA, Knobler R, Cutaneous Graft-Versus-Host Disease: Diagnosis and Treatment. Am J Clin Dermatol. 2018; 19(1): 33–50. doi: 10.1007/s40257-017-0306-9
16. Hill LQ, Alousi A, Kebriaei P, Mehta R, Rezvani K, Shpall E. New and emerging therapies for acute and chronic graft versus host disease. Ther Adv Hematol. 2018 Jan; 9(1): 21–46. doi: 10.1177/2040620717741860
17. Sierra GVG, Tamargo SB. Adjuvantes inmunológicos para vacunas humanas; estado actual, tendencias mundiales y en Cuba. Revista Anales de la Academia de Ciencias de Cuba.2011.Vol.1, No.2, pag.1-32.
18. Campa C, Sierra VG, Gutiérrez MM, Bisset G, García L, Puentes G, et al. Method for obtaining a vaccine with wide protective range against group B Neisseria meningitidis, the resulting vaccine, gammaglobulin and transfer factor. European Patent EP 0301992; 1995. Available from: https://patentimages.storage.googleapis.com/2a/67/0a/86991ddd224929/EP0301992A2.pdf
19. Sierra GVG. Cuban Meningococcal Vaccine VA-MENGOC-BC: 30 Years of Use and Future Potential. MEDICC Review, October 2019, Vol 21, No 4:19-27.
20. Tamargo SB. Nueva generación de adyuvantes nanoparticulados para vacunas profilácticas y terapéuticas de aplicación mucosal y sistémica. Tesis Doctoral. UMH-ICBP V de Girón, Instituto Finlay, IFAL-UH. Repositorio de Tesis Doctorales CNGC.2012.1-120pag.
21. Santos B.T., Pérez C.F., Infante B. J.F. , Márquez NY, Ramírez G W, Bourg V, Torralba D, Pérez V, Mouriño A, Ayala J, Labrada R A, Aleya L, Bungau S, Sierra G V G. Remote induction of cellular immune response in mice by anti-meningococcal nanocochleates- nanoproteoliposomes, Science of the Total Environment. 2019;668:1055-1063..doi.org/10.1016/j.scitotenv.2019.03.075]
22. Tamargo B, Márquez Y, Ramírez W, Cedré B, Fresno M, Sierra G. New proteoliposome vaccine formulation from N. meningitidis serogroup B, without aluminum hydroxide, retains its antimeningococcal protectogenic potential as well as Th-1 adjuvant capacity. BMC Immunology. [Internet] 2013, 14(Suppl 1):S12. 1-5 p. Available from: http://www.biomedcentral.com/1471-2172/14/S1/S12.
23. Fernandez-Botran R, Větvička V. Methods in cellular immunology: CRC; 2001;1-246p.
24.Chomczynski P, Sacchi N. Single-step RNA isolation from cultured cells or tissues. Anal Biochem.1987;162:156-259.DOI: 10.1016/0003-2697(87)90021-2.
25. Cohen JL, Trenado A,Vasey D, Klatzmann D, and Salomon, BL. CD4+CD25+ Immunoregulatory T Cells. New Therapeutics for Graft-Versus-Host Disease. J Exp Med. 2002 Aug 5; 196(3): 401–406.doi: 10.1084/jem.20020090.
26. Villafañe MJ, Moreno LH, Enfermedad Injerto versus Huésped. DERMATOL PERU 2012; vol 22 (4) 161-170.
27. Zhang L, Yu J and Wei W. Advance in Targeted immunotherapy for Graft-Versus-Host Disease. Front. Lmmunol.2018; 9:1087. Doi: 10.33891fimmu.2018.01087.
28. Hannon M, Lechanteur C, Lucas S, Somja J, Seidel L, Belle L,et al. Infusion of clinical grade enriched regulatory T cells delays experimental xenogeneic graftversus-host disease. Transfusion,2014; 54: 353–363.
29. Malard, F., Bossard, C., Brissot, E., Chevallier, P., Guillaume, T.,Delaunay, J., Mosnier, J. F., Moreau, P., Gr´egoire, M., Gaugler, B., Mohty,M. Increased Th17/Treg ratio in chronic liver GVHD. Bone Marrow Transplant. 2014;49, 539–544.
30. Sharma, S. Natural killer cells and regulatory T cells in earlypregnancy loss. Int. J. Dev. Biol. 2014; 58, 219–229.
31. Choi S W, Stiff P, Cooke K., Ferrara J L, Braun T, Kitko C,et al. TNF-inhibition with Etanercept for graft-versus-host disease prevention in high-risk HCT:lower TNFR1 levels correlate with better outcomes. Biol. Blood MarrowTransplant. 2012;18: 1525–1532.]
32. Ghadially, H., Ohana, M., Elboim, M., Gazit, R., Gur, C., Nagler, A.,et al. NK cell receptor NKp46 regulates graft-versushost disease. Cell Reports.2014; 7: 1809–1814.
33. Nalle S C, Kwak H A, Edelblum K L, Joseph, NE., Singh G., Khramtsova G. F,et al. Recipient NK cell inactivation and intestinal barrier loss are required for MHC-matched graft-versus-host disease. Sci. Transl. Med.2014; 6, 243ra87.
34. Verneris MR. Natural killer cells and regulatory T cells: how to manipulate a graft for optimal GVL. Hematology Am Soc Hematol Educ Program. 2013;335–41. doi:10.1182/asheducation-2013.1.335.
35. Reichenbach DK, Schwarze V, Matta BM, et al. The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood 2015; 125: 3183-92.
36. Zhang J, Ramadan AM, Griesenauer B, et al. ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graftversus- host disease. Sci Transl Med 2015; 7(308): 308ra160.
37. BEATRIZ T S, SIMONA B, CATHERINE F P, YANET M N, JUAN F. I B, REINALDO O H, WENDY R G, GABRIELA C, LOTFI A, V. GUSTAVO S G. Rev Chimie (Bucharest). [Internet]. 2019 Apr;70(4):1251–7. Available from: http://www.revistadechimie.ro
38. Henden, A. S., Hill, G. R. Cytokines in graft-versus-host disease.J. Immunol. 2015;194: 4604–4612.