Scenario simulation to predict the behavior of COVID-19 in Peru
Keywords:
COVID-19, scenario simulation, Delta variant, physical-mathematical modeling.Abstract
Introduction: COVID-19 has been a multi-dimensional challenge for humanity, even more so for decision-makers responsible for acting in an accurate and timely manner to confront it. In Peru, with is a current favorable trend of the Pandemic, the spread of the Delta variant is imminent, hence the need for predictive information that makes it possible to make early decisions to mitigate its effects.
Objective: To simulate scenarios applying the physical-mathematical modeling to predict the behavior of COVID-19 in Peru and facilitate decision-making.
Material and Methods: Physical-mathematical modeling using MATLAB software tools and functions.
Results: Determination of the behavior of the main variables associated with COVID-19 in Peru; physical-mathematical modeling based on the classic SIR with new compartments related to vaccination and those exposed, as well as its adjustment to the data from Peru; simulation of scenarios including the Delta variant for deceased persons, cumulative number of infected individuals, and infection in vaccinated and unvaccinated individuals.
Conclusions: The model conceived for the simulation of COVID-19 evolution scenarios demonstrated its ability to predict the behavior of the most important variables that determine such evolution in Peru; another wave of infections may occur and cumulative figures between 2.9 and 3.36 million infected individuals and between 215 and 255 thousand deaths may be reached. The main mitigation strategies should be aimed at guaranteeing social distancing and isolation, as well as increasing the vaccination regimen.Downloads
References
1.Organización Mundial de la Salud. COVID-19: Cronología de la actuación de la OMS [Internet]. Ginebra: Organización Mundial de la Salud; 2020 [Citado 02/06/2021]. Disponible en: https://www.who.int/es/news/item/27-04-2020-who-timeline---covid-19
2. Organización Mundial de la Salud. Actualización Epidemiológica Enfermedad por coronavirus (COVID-19) [Internet]. Ginebra: Organización Mundial de la Salud; 2021 [Citado 02/06/2021]. Disponible en: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---20-july-2021
3. Organización Mundial de la Salud. COVID-19 Weekly Epidemiological [Internet]. Ginebra: Organización Mundial de la Salud; 2021 [Citado 02/06/2021]. Disponible en: https://apps.who.int/iris/handle/10665/344799?locale-attribute=ar&
4. Brauer F, Castillo Chávez C, Feng Z. Mathematical Models in Epidemiology. USA: Princeton University; 2019.
5. Getz WM, Salter R, Muellerklein O, Yoon HS, Tallam K. Modeling epidemics: A primer and Numerus Model Builder implementation. Epidemics [Internet]. 2018;25(2018):9-19. Disponible en: http://doi.org/10.1016/j.epidem.2018.06.001
6. Kermack WO, McKendrick AG. Contributions to the Mathematical Theory of Epidemics. Proceedings Royal Society Mathematical Theory Epidemics [Internet]. 1927 [Citado 02/06/2021];115(772):700-21. Disponible en: https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118
7. Leung K, Wu JT, Liu D, Leung GM. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. Lancet [Internet]. 2020;395(2020):1382-93. Disponible en: http://doi.org/10.1016/S0140-6736(20)30746-7
8. Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, et al. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int Jf Infectious Diseases [Internet]. 2020;93:211-6. Disponible en: https://doi.org/10.1016/j.ijid.2020.02.058
9. Malek A, Hoque A. Trends of 2019-nCoV in South Asian countries and prediction of the epidemic peaks. Virus Research. 2021;292(2021):1-10.
10. Ndaïrou F, Area I, Nieto JJ, Torres FM. Mathematical Modeling of COVID-19 Transmission Dynamics with a Case Study of Wuhan. Chaos Solitons Fractals [Internet]. 2020;135:109846. Disponible en: http://doi.org/10.1016/j.chaos.2020.109846
11. Roda WC, Varughese MB, Han D, Li MY. Why is it difficult to accurately predict the COVID-19 epidemic?. Infectious Disease Modelling [Internet]. 2020;5:271-81. Disponible en: http://doi.org/10.1016/j.idm.2020.03.001
12. Sánchez HE, Ramos LB, Galindo PÁ, Rodríguez AS. Modelación físico-matemática para la toma de decisiones frente a la COVID-19 en Cuba. Retos de la Dirección [Internet]. 2020 [Citado 02/06/2021];14(2):55-86. Disponible en: https://revistas.reduc.edu.cu/index.php/retos/article/view/3544
13. Wang L, Wang Y, Ye Y, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents [Internet]. 2020;55(6):105948. Disponible en: https://doi.org/10.1016/j.ijantimicag.2020.105948
14. Yang C, Wang J. A mathematical model for the novel coronavirus epidemic inWuhan, China. Mathematical Biosciences and Engineering [Internet]. 2020;17(3):2708-24. Disponible en: http://doi.org/10.3934/mbe.2020148
15. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. American Journal of Epidemiology. 2013;178(9):1505-12.
16. Li Q, Guan X, Wu P. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. New England Journal of Medicine [Internet]. 2020;382:1199-207. Disponible en: http://doi.org/10.1056/NEJMoa2001316
17. Liu Y, Gayle AA, Wilder Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine [Internet]. 2020;27(2):1-4. Disponible en: http://doi.org/10.1093/jtm/taaa021
18. Ma J. Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease Modelling [Internet]. 2020;5(2020):129-41. Disponible en: http://doi.org/10.1016/j.idm.2019.12.009
19. Read JM, Bridgen RE, Cummings DAT, Ho A, Jewell CP. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. MedRxiv [Internet]. New York: Cold Spring Harbor; 2020. Disponible en: https://www.medrxiv.org/content/10.1101/2020.01.23.20018549v2
20. Center Systems Science Engineering. CSSE at JHU Upstream repository [Internet]. Baltimore: Johns Hopkins University; 2021 [Citado 02/06/2021]. Disponible en: https://github.com/datasets/covid-19
21. Taramona LA, Sánchez HE, Sánchez A, Huatuco MM. Modelación matemática para mitigar los efectos de la COVID-19 en el turismo peruano. Rev Investigaciones ULCB [Internet]. 2020;7(1):125-41. Disponible en: https://doi.org/10.36955/RIULCB.2020v7n1.0010
22. Organización Mundial de la Salud. COVID-19 Weekly Epidemiological Update. Edition 47 [Internet]. Ginebra: Organización Mundial de la Salud; 2021 [Citado 02/06/2021]. Disponible en: https://apps.who.int/iris/handle/10665/342524?locale-attribute=es&
23. Picazo JJ. Vacuna frente al COVID-19. Sociedad Española de Quimioterapia: infección y vacunas. Madrid: Facultad de Medicina Universidad Complutense; 2021.
24. SCIENSANO. FACT SHEET COVID-19 disease (SARS-CoV-2 virus) [Internet]. Bélgica: SCIENSANO; 2021 [Citado 02/06/2021]. Disponible en: https://covid-19.sciensano.be/sites/default/files/Covid19/COVID-19_fact_sheet_ENG.pdf
25. Instituto Nacional Estadística Informática. Estado de la población peruana 2020 [Internet]. Perú: INEI; 2020 [Citado 02/06/2021]. Disponible en: https://www.inei.gob.pe/nosotros/
6. Bartholomew Biggs M. Nonlinear Optimization with Engineering Applications [Internet]. New York: Springer; 2008 [Citado 02/06/2021]. Disponible en: https://link.springer.com/book/10.1007/978-0-387-78723-7
27. Collin P, Malec D, Lefevre Y. A General Method to Compute the Electric Flux Lines between Two Magnet Wires in Close Contact and Its Application for the Evaluation of Partial Discharge Risks in the Slots of Electric Machines Embedded in Future Transportation Systems. Advances in Aerospace Science and Technology [Internet]. 2021 [Citado 02/06/2021];6(1): [Aprox. 2 p.]. Disponible en: https://www.scirp.org/%28S%28351jmbntvnsjt1aadkposzje%29%29/reference/referencespapers.aspx?referenceid=2937391
28. Shim E. Projecting the Impact of SARS-CoV-2 Variants and the Vaccination Program on the Fourth Wave of the COVID-19 Pandemic in South Korea. International Journal of Environmental Research and Public Health. 2021;18(7578):1-11.