Influence of visceral pregestational obesity on plancental and fetal development
Keywords:
Obesity, placenta and fetal growth, ectopic accumulation of lipids.Abstract
Introduction: Pregestational obesity, especially visceral obesity, is associated with the development of complications for the fetus, the mother and the neonate. The analysis of the placenta is a key to understanding the development of these complications.
Objective: To evaluate the influence of visceral pre-gestational obesity on the placental and fetal development in rats.
Material and Methods: Female Wistar rats received subcutaneous injections of monosodium glutamate (4 mg/ g of body weight) during the neonatal period to induce obesity or NaCl 0.9 % (Controls). At 90 days of age, obesity was confirmed and at 120 days of life they were mated overnight with healthy males of the same substrain. Gestational day 0 was defined when sperms were found in vaginal smear. The day 20 of gestation, euthanasia was practiced for obtaining of placentas and fetuses. Placental biochemical, and structural variables and indicators of growth and fetal development were determined.
Results: In the placentas of obese rats, reserve cells of glycogen, triglycerides content and the area of the trophoblast were increased. The area of maternal blood was decreased. The obese group also showed an increased placental index. Fetuses of obese mothers had smaller tail length, cranial diameters and ossification sites numbers.
Conclusions: Pregestational obesity exerted a harmful effect on placental development, provoking fetal growth restriction. This may be due to a decrease in the maternal-fetal interchange of nutrients and oxygen because of ectopic accumulation of lipids in the labyrinthine zone.
Downloads
References
1. Lim S, Harrison C, Callander E, Walker R, Teede H, Moran L. Addressing Obesity in Preconception, Pregnancy, and Postpartum: A Review of the Literature. Curr Obes Rep [Internet]. 2022 [Citado 10/09/2023];11(4):405-14. Disponible en: https://dx.doi.org/10.1007/s13679-022-00485-x
2. Yong W, Wang J, Leng Y, Li L, Wang H. Role of Obesity in Female Reproduction. Int J Med Sci [Internet]. 2023 [Citado 10/09/2023];20(3):366-75. Disponible en: https://dx.doi.org/10.7150/ijms.80189
3. Kim J, Ayabe A. Obesity in Pregnancy [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [Citado 10/09/2023]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK572113
4. Aleker N, Lim BH. Intrapartum care and management of complications in women with obesity. Best Pract Res Clin Obstet Gynaecol [Internet]. 2023 [Citado 10/09/2023];91:102404. Disponible en: https://dx.doi.org/10.1016/j.bpobgyn.2023.102404
5. Salmón-Gómez L, Catalán V, Frühbeck G, Gómez-Ambrosi J. Relevance of body composition in phenotyping the obesities. Rev Endocr Metab Disord [Internet]. 2023 [Citado 10/09/2023];24(5):809-23. Disponible en: https://dx.doi.org/10.1007/s11154-023-09796-3
6. Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol [Internet]. 2022 [Citado 10/09/2023];131:66-77. Disponible en: https://dx.doi.org/10.1016/j.semcdb.2022.03.039
7. Suárez G. Efecto de la obesidad inducida por glutamato monosódico en ratas Wistar y su descendencia [Tesis doctoral]. La Habana: Universidad de Ciencias Médicas de La Habana; 2017.
8. Krinke GJ, ed. The laboratory rat: the handbook of experimental animals. London: Academic Press; 2000.
9. Bernardis LL, Patterson BD. Correlation between Lee Index and carcass fat content in weanling and adult female rats with hypothalamic lesions. J Endocrinol. 1968;40(4):527-8
10. American Veterinary Medical Association. AVMA Guidelines for the Euthanasia of Animals [Internet]. Schaumburg (IL): AVMA; 2020 [Citado 10/09/2023]. Disponible en: https://www.avma.org/kb/policies/documents/euthanasia.pdf
11. Corvino SB. Intrauterine Growth Restricted Rats Exercised at Pregnancy: Maternal-Fetal Repercussions. Reprod Sci [Internet]. 2015 [Citado 10/09/2023];22(8):991-9. Disponible en: https://dx.doi.org/10.1177/1933719115570905
12. Núñez N, Suaárez G, Calcedo Z, Laymit A, Joffre C, Fernández T, et al. Influence of Vitamin E on the Reproductive Capacity and Fetal Development in Obese Rats. Annals of Diabetes Metabolic Disorders & Control. 2019;2(1):122.
13. Tanner LD, Brock C, Chauhan SP. Severity of fetal growth restriction stratified according to maternal obesity. J Matern Fetal Neonatal Med [Internet]. 2022 [Citado 10/09/2023];35(10):1886-90. Disponible en: https://dx.doi.org/10.1080/14767058.2020.1773427
14. Bedell S, Hutson J, de Vrijer B, Eastabrook G. Effects of Maternal Obesity and Gestational Diabetes Mellitus on the Placenta: Current Knowledge and Targets for Therapeutic Interventions. Curr Vasc Pharmacol [Internet]. 2021 [Citado 10/09/2023];19(2):176-92. Disponible en: https://dx.doi.org/10.2174/1570161118666200616144512
15. López-Tello J, Sferruzzi-Perri AN. Characterization of placental endocrine function and fetal brain development in a mouse model of small for gestational age. Front Endocrinol (Lausanne) [Internet]. 2023 [Citado 10/09/2023];14:1116770. Disponible en: https://dx.doi.org/10.3389/fendo.2023.1116770
16. Vaughan OR, Fisher HM, Dionelis KN, Jefferies EC, Higgins JS, Musial B, et al. Corticosterone alters materno-fetal glucose partitioning and insulin signaling in pregnant mice. J Physiol [Internet]. 2015 [Citado 10/09/2023];593(5):1307-21. Disponible en: https://dx.doi.org/10.1113/jphysiol.2014.287177
17. Rasool A, Mahmoud T, Mathyk B, Kaneko-Tarui T, Roncari D, White KO, et al. Obesity downregulates lipid metabolism genes in first trimester placenta. Sci Rep [Internet]. 2022 [Citado 10/09/2023];12(1):19368. Disponible en: https://dx.doi.org/10.1038/s41598-022-24040-9
18. Musa E, Salazar-Petres E, Arowolo A, Levitt N, Matjila M, Sferruzzi-Perri AN. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol [Internet]. 2023 [Citado 10/09/2023];601(7):1287-306. Disponible en: https://dx.doi.org/10.1113/JP284139
19. Muñoz Y. Características morfológicas de placenta de 16.5 días de gestación proveniente de ratas con obesidad pregestacional [Tesis]. Santiago de Cali: Universidad del Valle; 2018.
20. Hernández RJ, Mahmoud AM, Königsberg M, López Díaz NE. Obesity: pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother [Internet]. 2019 [Citado 10/09/2023];111:503-16. Disponible en: https://dx.doi.org/10.1016/j.biopha.2018.12.108
21. Suárez Román G, Capote Guitián C, Acosta Sánchez T, Fernández Romero T, Clapés Hernández S. Indicadores metabólicos y de estrés oxidativo en ratas con obesidad inducida con glutamato monosódico. Rev haban cienc méd [Internet]. 2021 [Citado 10/09/2023];20(4):e3642. Disponible en: https://www.revhabanera.sld.cu/index.php/rhab/article/view/3642
22. Belo G. Influencia de la obesidad visceral de larga evolución sobre la función placentaria en ratas Wistar [Tesis Especialidad]. La Habana: Universidad de Ciencias Médicas de La Habana; 2019.
23. Yang Z, Luo X, Huang B, Jia X, Luan X, Shan N. et al. Altered distribution of fatty acid exerting lipid metabolism and transport at the maternal-fetal interface in fetal growth restriction. Placenta [Internet]. 2023 [Citado 10/09/2023];139:159-71. Disponible en: http://dx.doi.org/10.1016/j.placenta.2023.05.019
24. Strakovsky R, Xiang-Pan Y. A Decrease in DKK1, a WNT inhibitor, contributes to placental lipid accumulation in an obesity-prone rat model. Biol Reprod [Internet]. 2012 [Citado 10/09/2023];86(3):81-92. Disponible en: https://dx.doi.org/10.1095/.biolreprod.111.094482
25. Barja-Fernández S, Folgueira C, Castelao C, Pena-León V, González-Sáenz P, Vázquez-Cobela R, et al. ANGPTL-4 is Associated with Obesity and Lipid Profile in Children and Adolescents. Nutrients [Internet]. 2019 [Citado 10/09/2023];11(6):1340. Disponible en: https://dx.doi.org/10.3390/nu11061340
26. Zuo Y, He Z, Chen Y, Dai L. Dual role of ANGPTL4 in inflammation. Inflamm Res [Internet]. 2023 [Citado 10/09/2023];72(6):1303-13. Disponible en: http://dx.doi.org/10.1007/s00011-023-01753-9
27. Miguel-Soca P, Feria-Díaz G, González-Benítez S, Leyva-Montero M. Obesidad, inflamación y embarazo, una tríada peligrosa. Rev Cubana Obstet Ginecol [Internet]. 2021 [Citado 10/09/2023];46(4). Disponible en: https://revginecobstetricia.sld.cu/index.php/gin/article/view/605
28. Denizli M, Capitano ML, Kua KL. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring. Front Cell Infect Microbiol [Internet]. 2022 [Citado 10/09/2023];12:940937. Disponible en: http://dx.doi.org/10.3389/fcimb.2022.940937
29. Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Maternal Obesity and Gut Microbiota Are Associated with Fetal Brain Development. Nutrients [Internet]. 2022 [Citado 10/09/2023];14(21):4515. Disponible en: https://dx.doi.org/10.3390/nu14214515
30. Santos-Rosendo C, Bugatto F, González-Domínguez A, Lechuga-Sancho AM, Mateos RM, Visiedo F. Placental Adaptive Changes to Protect Function and Decrease Oxidative Damage in Metabolically Healthy Maternal Obesity. Antioxidants (Basel) [Internet]. 2020 [Citado 10/09/2023];9(9):794. Disponible en: https://dx.doi.org/10.3390/antiox9090794