Renoprotective effect of erythropoietin in animal models of kidney injury. A systematic review
Keywords:
Erythropoietin, chronic kidney disease, diabetic nephropathy, acute kidney injury, renal hypoxia, renoprotective.Abstract
Introduction: Chronic kidney disease constitutes a serious health problem all over the world and no therapy has evidenced to be effective to prevent it or to stop its progression, consequently, cytoprotective effect substances to the kidney such as erythropoietin, have been studied.
Objective: To evaluate the effect of exogenous erythropoietin as renoprotective in animal models of kidney injury.
Material and Methods: PRISMA method was used to conduct a systematic review of original articles written in English and Spanish and published during the last ten years, in which the cytoprotective effect of erythropoietin in animal models of kidney injury was evaluated. LILACS and Pubmed/Medline databases as well as Google Scholar search engine were used.
Results: A total of 21 articles were included for synthesis and review. Most of the studies were based on animal models of acute kidney injury due to ischemia/reperfusion; only six research works were carried out in animal models of chronic kidney disease, three of them due to diabetic nephropathy. The use of adult Sprague-Dawley and Wistar male rats was predominant and so the high doses of erythropoietin. The schemes for treatment were diverse and they depended on the type of model studied. The effect in the structure and kidney function as well as biomarkers of apoptosis, cell proliferation, vascular restoration, oxidative stress, and inflammation were determined.
Conclusions: Erythropoietin has renoprotective effects in animal models of kidney injury due to antiapoptotic, pro-proliferative, angiogenic, antioxidant, and anti-inflammatory mechanisms which could be considered as further strategies to prevent or decrease acute or chronic kidney disease.
Downloads
References
1. Ginarte GM, Domínguez EG, Marín DP. Enfermedad renal crónica, algunas consideraciones actuales. Multimed [Internet]. 2020; 24(2). Available from: https://revmultimed.sld.cu/index.php/mtm/article/view/1929.
2. Castellanos Castillo Y, Fong Estrada JA, Vázquez Trigo JM, Fong J. Marcadores de daño renal en pacientes con factores de riesgo de enfermedad renal crónica. Medisan [Internet]. 2018; 22(2):[142-8 pp.]. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192018000200004.
3. Pavón-Rojas AJ, Escalona-González SO, Cisnero-Reyes L, González-Milán ZC. Microalbuminuria: método de detección precoz de enfermedad renal crónica en diabéticos. SPIMED [Internet]. 2020; 1(2):[15 p.]. Available from: http://www.revspimed.sld.cu/index.php/spimed/article/view/15.
4. Gutiérrez-Montenegro LM, Ortiz-Peralta D, Bueno-López JE, Parra-Charris AE, Murillo-Moreno LÁ, Celis-Regalado LG. Revisión de nefropatía diabética. Revista Colombiana de Endocrinología, Diabetes & Metabolismo [Internet]. 2021; 8(1). Available from: https://revistaendocrino.org/index.php/rcedm/article/view/698/895.
5. Díaz AP, Rodríguez JLC, Navia GCR, García FG, Lora HR. Características demográficas y causas de insuficiencia renal crónica en pacientes dialíticos de un hospital habanero. Archivos del Hospital Universitario" General Calixto García" [Internet]. 2021; 9(1):[8-19 pp.]. Available from: http://revcalixto.sld.cu/index.php/ahcgurn:nbn:de:0000-ahcg.v9i1.594
6. Dirección de Registros Médicos y Estadísticas de Salud. Anuario estadístico de salud 2021. La Habana: Ministerio de Salud Pública [Internet]. 2022. Available from: https://temas.sld.cu/estadisticassalud/.
7. Salanova Villanueva L, Santos Sánchez-Rey B, Sanz Sainz M. Mecanismos inflamatorios y fibróticos en la enfermedad renal. Protagonistas y terapéutica. Revista del Laboratorio Clínico [Internet]. 2018; 11(4):[227-37 pp.]. Available from: https://www.sciencedirect.com/science/article/pii/S1888400817301228.
8. Vittori D, Chamorro ME, Nesse A. Eritropoyetina como agente eritropoyético y no eritropoyético: consideraciones terapéuticas. Acta bioquímica clínica latinoamericana [Internet]. 2016; 50(4):[773-82 pp.]. Available from: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572016000400025.
9. Suresh S, Rajvanshi PK, Noguchi CT. The many facets of erythropoietin physiologic and metabolic response. Frontiers in Physiology [Internet]. 2020; 10:[1534 p.]. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2019.01534/full
10. Peng B, Kong G, Yang C, Ming Y. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell death & disease [Internet]. 2020; 11(2):[1-12 pp.]. Available from: https://www.nature.com/articles/s41419-020-2276-8.
11. Brines M, Cerami A. The Receptor That Tames the Innate Immune Response. Molecular Medicine [Internet]. 2012; 18(3):[486-96 pp.]. Available from: https://doi.org/10.2119/molmed.2011.00414.
12. Cassis P, Gallon L, Benigni A, Mister M, Pezzotta A, Solini S, et al. Erythropoietin, but not the correction of anemia alone, protects from chronic kidney allograft injury. Kidney international [Internet]. 2012; 81(9):[903-18 pp.]. Available from: https://www.sciencedirect.com/science/article/pii/S0085253815554082
13. Coldewey SM, Khan AI, Kapoor A, Collino M, Rogazzo M, Brines M, et al. Erythropoietin attenuates acute kidney dysfunction in murine experimental sepsis by activation of the β-common receptor. Kidney international [Internet]. 2013; 84(3):[482-90 pp.]. Available from: https://www.sciencedirect.com/science/article/pii/S0085253815559838
14. Loeffler I, Rüster C, Franke S, Liebisch M, Wolf G. Erythropoietin ameliorates podocyte injury in advanced diabetic nephropathy in the db/db mouse. American Journal of Physiology-Renal Physiology [Internet]. 2013; 305(6):[F911-F8 pp.]. Available from: https://journals.physiology.org/doi/full/10.1152/ajprenal.00643.2012
15. Lin X, Jiang C, Luo Z, Qu S. Protective effect of Erythropoietin on renal injury induced in rats by four weeks of exhaustive exercise. BMC nephrology [Internet]. 2013; 14(1):[1-8 pp.]. Available from: https://link.springer.com/article/10.1186/1471-2369-14-130
16. Stojanović VD, Vučković NM, Barišić NA, Srdić B, Doronjski AD, Peco Antić AE. Early biomarkers of renal injury and protective effect of erythropoietin on kidneys of asphyxiated newborn rats. Pediatric Research [Internet]. 2014; 76(1):[11-6 pp.]. Available from: https://www.nature.com/articles/pr201450
17. Liu L, Liu C, Hou L, Lv J, Wu F, Yang X, et al. Protection against ischemia/reperfusion‑induced renal injury by co‑treatment with erythropoietin and sodium selenite. Molecular Medicine Reports [Internet]. 2015; 12(6):[7933-40 pp.]. Available from: https://www.spandidos-publications.com/mmr/12/6/7933
18. Liao J-G, Li M-Y, Wang X-H, Xie Q. The protective effect of erythropoietin pretreatment on ischemic acute renal failure in rats. Journal of Acute Disease [Internet]. 2016; 5(5):[408-12 pp.]. Available from: https://www.sciencedirect.com/science/article/pii/S2221618916301147.
19. Tögel FE, Ahlstrom JD, Yang Y, Hu Z, Zhang P, Westenfelder C. Carbamylated erythropoietin outperforms erythropoietin in the treatment of AKI-on-CKD and other AKI models. Journal of the American Society of Nephrology [Internet]. 2016; 27(11):[3394-404 pp.]. Available from: https://jasn.asnjournals.org/content/27/11/3394.short
20. Banaei S, Ahmadiasl N, Alihemmati A. Comparison of the protective effects of erythropoietin and melatonin on renal ischemia-reperfusion injury. Trauma monthly [Internet]. 2016; 21(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124127/
21. Eren Z, Günal MY, Arı E, Çoban J, Çakalağaoğlu F, Çağlayan B, et al. Pleiotropic and renoprotective effects of erythropoietin beta on experimental diabetic nephropathy model. Nephron [Internet]. 2016; 132(4):[292-300 pp.]. Available from: https://doi.org/10.1159/000444649
22. Elshiekh M, Kadkhodaee M, Seifi B, Ranjbaran M, Askari H. Up-regulation of nitric oxide synthases by erythropoietin alone or in conjunction with ischemic preconditioning in ischemia reperfusion injury of rat kidneys. General physiology and biophysics [Internet]. 2017; 36(3):[281-8 pp.]. Available from: https://doi.org/10.4149/gpb_2016058.
23. Fouda A-M, Ashour RH, El-Banna F, Saad MA, Mostafa FA, Fouda MI. Differential Effects of Low-Dose Erythropoietin in Rat Model of Diabetic Nephropathy. Advances in Medicine and Medical Research [Internet]. 2018; 1(1):[25-33 pp.]. Available from: http://www.manspub.com/ojs3/index.php/AMMR/article/view/17
24. Zhang J, Zhao D, Na N, Li H, Miao B, Hong L, et al. Renoprotective effect of erythropoietin via modulation of the STAT6/MAPK/NF-κB pathway in ischemia/reperfusion injury after renal transplantation. international journal of molecular medicine [Internet]. 2018; 41(1):[25-32 pp.]. Available from: https://www.spandidos-publications.com/ijmm/41/1/25
25. Tang Y, Tang J, Qian P, Zhang Y, Shen R, Shen X, et al. Recombinant human erythropoietin restrains oxidative stress in streptozotocin-induced diabetic rats exposed to renal ischemia reperfusion injury. Transplantation Proceedings [Internet]. 2019; 51(6):[2076-80 pp.]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0041134519302301
26. Elshiekh M, Kadkhodaee M, Seifi B, Ranjbaran M. Additional effects of erythropoietin pretreatment, ischemic preconditioning, and N-acetylcysteine posttreatment in rat kidney reperfusion injury. Turkish Journal of Medical Sciences [Internet]. 2019; 49(4):[1249-55 pp.]. Available from: https://journals.tubitak.gov.tr/medical/vol49/iss4/41/.
27. Golmohammadi M-G, Ajam R, Shahbazi A, Chinifroush-Asl MM, Banaei S. Protective effect of vitamin D3 and erythropoietin on renal ischemia/reperfusion-induced liver and kidney damage in rats. Journal of Herbmed Pharmacology [Internet]. 2020; 9(3):[293-9 pp.]. Available from: http://herbmedpharmacol.com/Article/jhp-35611.
28. Altun G, Cakiroglu Y, Pulathan Z, Yulug E, Mentese A. Renoprotective potential of exogen erythropoietin on experimental ruptured abdominal aortic aneurysm model: An animal study. Iranian Journal of Basic Medical Sciences [Internet]. 2020; 23(2):[271 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211356/
29. Kwak J, Kim JH, Jang HN, Jung MH, Cho HS, Chang S-H, et al. Erythropoietin ameliorates ischemia/reperfusion-induced acute kidney injury via inflammasome suppression in mice. International Journal of Molecular Sciences [Internet]. 2020; 21(10):[3453 p.]. Available from: https://www.mdpi.com/1422-0067/21/10/3453.
30. Ye L, Xiao F, Xie J, Feng L, Tang Z, Chen E, et al. Synergistic renoprotective effects of sesame oil and erythropoietin on ischemic kidney injury after renal transplantation. AMB Express [Internet]. 2020; 10(1):[1-7 pp.]. Available from: https://amb-express.springeropen.com/articles/10.1186/s13568-019-0934-y
31. Vázquez-Méndez E, Gutiérrez-Mercado Y, Mendieta-Condado E, Gálvez-Gastélum FJ, Esquivel-Solís H, Sánchez-Toscano Y, et al. Recombinant erythropoietin provides protection against renal fibrosis in adenine-induced chronic kidney disease. Mediators of inflammation [Internet]. 2020; 2020:8937657. Available from: https://www.hindawi.com/journals/mi/2020/8937657/.
32. El-Maadawy WH, Hassan M, Hafiz E, Badawy MH, Eldahshan S, AbuSeada A, et al. Co-treatment with Esculin and erythropoietin protects against renal ischemia–reperfusion injury via P2X7 receptor inhibition and PI3K/Akt activation. Scientific reports [Internet]. 2022; 12(1):[1-12 pp.]. Available from: https://www.nature.com/articles/s41598-022-09970-8
33. Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed Pharmacother [Internet]. 2021; 139:[111558- pp.]. Available from: https://dx.doi.org/10.1016/j.biopha.2021.111558.
34. Martí A, Tapiz C. Modelos murinos para el estudio de la diabetes tipo 2: una revisión sistemática. Revista de la Asociación Latinoamericana de Diabetes [Internet]. 2019; 9:[165-78 pp.]. Available from: https://www.reistaalad.com/frame_esp.php?id=412.
35. Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharmaceutical research [Internet]. 2020; 37:[1-17 pp.]. Available from: https://link.springer.com/article/10.1007/s11095-019-2745-x.