Status of research on prediction models for severity in confirmed Covid-19 patients
Keywords:
Prediction model, prognostic model, theoretical model, COVID-19, SARS-CoV-2.Abstract
Introduction: Previous knowledge in the scientific literature on clinical prediction models in patients with COVID-19 may be useful for the development of new research.
Objective: To describe the sources, authors, documents and key issues that are part of the research front; identify which models, outcome variables, predictors and algorithms have been relevant; and identify to what extent the available models could meet the quality attributes and what characteristics they must have to be applicable to the Cuban context.
Material and Methods: A review and scientometric analysis was carried out on the ongoing research, along with a validation of clinical predictive models for COVID-19. Scientometric indicators were used and a thematic map was made for the analysis of the conceptual structure of the subject.
Results: The subject was of great interest, with papers published in the highest impact journals. It is possible to distinguish a context of low and high risk application according to the primary and secondary health care levels. The systematic review published by Wynants et al. was the publication with the greatest impact and an important source for the identification of models, main components, as well as possible causes of bias.
Conclusions: The literature recognizes that most of the published models are not recommended for general use in clinical practice, so it is an open research front. However, the data obtained could be useful for the development and validation of Cuban models.
Downloads
References
1. Dimensions. Digital Science [Internet]. England: Dimensions.ai; 2022 [Citado 16/12/2022]. Disponible en: https://app.dimensions.ai/
2. Arencibia R. La investigación sobre COVID-19: Un enfoque cienciométrico [Internet]. México: Centro de Ciencias de la Complejidad; 2022 [Citado 16/12/2022]. Disponible en: https://www.youtube.com/watch?v=covOjpBLTjc&t=2529s
3. MartÍnez-Perez C, Álvarez-Peregrina C, Villa-Collar C, Sánchez-Tena MÁ. Citation Network Analysis of the Novel Coronavirus Disease 2019 (COVID-19). Int J Environ Res Public Health [Internet]. 2020 [Citado 16/12/2022];17(20):7690. Disponible en: https://www.mdpi.com/1660-4601/17/20/7690
4. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ [Internet]. 2020 [Citado 16/12/2022]; 369: m1328. Disponible en: https://www.bmj.com/content/bmj/369/bmj.m1328.full.pdf
5. Monzón-Pérez M, Sánchez-Valdés L, Lage-Dávila A. Estado y tendencias en la investigación sobre modelos de predicción clínica para la estratificación del riesgo de severidad en pacientes confirmados de Covid-19 [Internet]. Brazil: SciEloPreprint; 2023 [Citado 16/12/2022]. Disponible en: https://doi.org/10.1590/SciELOPreprints.5795
6. Steyerberg EW. Clinical Prediction Models [Internet]. USA: Springer Link; 2009 [Citado 16/12/2022]. Disponible en: https://link.springer.com/book/10.1007/978-3-030-16399-0
7. Gupta RK, Marks M, Samuels THA, Luintel A, Rampling T, Chowdhury H, et al. Systematic evaluation and external validation of 22 prognostic models among hospitalised adults with COVID-19: an observational cohort study. Eur Respir J [Internet]. 2020 [Citado 16/12/2022];56(6):2003498. Disponible en: http://erj.ersjournals.com/lookup/doi/10.1183/13993003.03498-2020
8. Australian Bureau of Statistics. Australian and New Zealand Standard Research Classification (ANZSRC) 2020 [Internet]. Australian: Australian Bureau of Statistics; 2020 [Citado 16/12/2022]. Disponible en: https://www.abs.gov.au/statistics/classifications/australian-and-new-zealand-standard-research-classification-anzsrc/latest-release
9. Dimensions. Which indicators are used in Dimensions, and how can these be viewed?, Metrics and indicators in Dimensions [Internet]. London: Dimensions.ai; 2021. [Citado 16/12/2022]; Disponible en: https://plus.dimensions.ai/support/solutions/articles/23000018839-which-indicators-are-used-in-dimensions-and-how-can-these-be-viewed-
10. Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr [Internet]. 2017 [Citado 16/12/2022];11(4):959-75. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1751157717300500
11. Aria M, Cuccurullo C, D’Aniello L, Misuraca M, Spano M. Thematic Analysis as a New Culturomic Tool: The Social Media Coverage on COVID-19 Pandemic in Italy. Sustainability [Internet]. 2022 [Citado 16/12/2022];14(6):3643. Disponible en: https://www.mdpi.com/2071-1050/14/6/3643
12. Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing [Internet]. Austria: The R Project for Statistical Computing; 2021 [Citado 16/06/2023]. Disponible en: https://www.R-project.org
13. Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, et al. Prediction model and risk scores of ICU admission and mortality in COVID-19. Adrish M, editor. PLOS ONE [Internet]. 2020 [Citado 16/12/2022];15(7):e0236618. Disponible en: https://dx.plos.org/10.1371/journal.pone.0236618
14. Banoei MM, Dinparastisaleh R, Zadeh AV, Mirsaeidi M. Machine-learning-based COVID-19 mortality prediction model and identification of patients at low and high risk of dying. Crit Care [Internet]. 2021 [Citado 16/12/2022];25(1):328. Disponible en: https://doi.org/10.1186/s13054-021-03749-5
15. van Smeden M, Moons C, Van Calster B. COVID Precise [Internet]. Paises Bajos: Julius Center for Health Sciences and Primary Care; 2012 [Citado 16/12/2022]. Disponible en: https://www.covprecise.org/
16. World Health Organization. Living guidance for clinical management of COVID- 19: living guidance, 23 November 2021 [Internet].Geneva: World Health Organization; 2021 [Citado 16/12/2022]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/349321/WHO-2019-nCoV-clinical-2021.2-eng.pdf
17. Clift AK, Coupland CAC, Keogh RH, Diaz-Ordaz K, Williamson E, Harrison EM, et al. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ [Internet].2020 [Citado 16/12/2022];371:m3731. Disponible en: https://www.bmj.com/lookup/doi/10.1136/bmj.m3731
18. Goodacre S, Thomas B, Sutton L, Burnsall M, Lee E, Bradburn M, et al. Derivation and validation of a clinical severity score for acutely ill adults with suspected COVID-19: The PRIEST observational cohort study. PLOS ONE [Internet]. 2021 [Citado 16/12/2022];16(1):e0245840. Disponible en: https://dx.plos.org/10.1371/journal.pone.0245840
19. Gupta RK, Harrison EM, Ho A, Docherty AB, Knight SR, van Smeden M, et al. Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study. Lancet Respir Med [Internet]. 2021 [Citado 16/12/2022];9(4):349-59. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2213260020305592
20. Carr E, Bendayan R, Bean D, Stammers M, Wang W, Zhang H, et al. Evaluation and improvement of the National Early Warning Score (NEWS2) for COVID-19: a multi-hospital study. BMC Med [Internet]. 2021 [Citado 16/12/2022];19(1):23. Disponible en: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-020-01893-3
21. Gabbe BJ, Cameron PA, Finch CF. The status of the Glasgow coma scale. Emerg Med. 2003;15(4):353-60.
22. MINSAP. Protocolo de Actuación Nacional para la COVID-19 [versión 5]. [Internet]. La Habana: MINSAP; 2020 [Citado 16/12/2022]. Disponible en: https://files.sld.cu/editorhome/files/2020/08/VERSION-5-DEL-PROTOCOLO-PARA-PUBLICAR-13-DE-AGOSTO-2020.pdf
23. Monzón-Pérez M, Sánchez-Valdés L, Lage-Dávila A. Identificación de pacientes de muy bajo riesgo de transición a la severidad en confirmados de Covid-19. Cuba. Marzo 2020-Mayo 2021[Internet]. Brazil: SciEloPreprint; 2021 [Citado 16/12/2022]. Disponible en: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjNpsO0_dD_AhVHFlkFHbefBxgQFnoECBAQAQ&url=https%3A%2F%2Fpreprints.scielo.org%2Findex.php%2Fscielo%2Fpreprint%2Fdownload%2F5760%2F11150%2F11709&usg=AOvVaw0dc-WPixtC_AuxgWl4fNV3&opi=89978449
24. Herrera C, Lage Dávila A, Betancourt Cervantes J, Barreto Fiu E, Sánchez Valdés L, Crombet Ramos T. Nomograma de predicción para la estratificación del riesgo en pacientes con COVID-19. Eur J Health Res [Internet]. 2021 [Citado 16/12/2022];7(2):1-19. Disponible en: https://revistas.uautonoma.cl/index.php/ejhr/article/view/1592