Influence of NeuroEPO on the fetal-placental development of rats in a model of placental insufficiency
Keywords:
Fetal hypoxia, placental insufficiency, erythropoietinAbstract
Introduction: Placental insufficiency is the most common cause of intrauterine growth retardation (IUGR). This condition requires new strategies that will make it possible to reduce hypoxia and fetal-placental malnutrition. There is evidence that NeuroEPO manages to protect tissues in hypoxia.
Objective: To assess the influence of NeuroEPO on feto-placental development in rats with placental insufficiency.
Material and Methods: Wistar rats gestated with a model of unilateral ligation of the right uterine artery on day 16 of gestation (GA) were used. That same day, half of the mothers were randomly administered NeuroEPO (0.5 mg/kg/day subcutaneously for three days) and the rest received placebo. On day 20EG, the fetoplacental unit was extracted. According to the ligated horn, four groups were formed: A Control I group, an IUGR I group, a NeuroEPO II Control group, and a NeuroEPO II IUGR group. Reproductive variables, growth variables and histological studies in the placentas were evaluated.
Results: Reproductive variables did not vary between the linked groups; the IUGR group presented a decrease in fetal weight, an insufficient placenta with an increase in the area of the union zone and a decrease in the exchange zone. The labyrinth presented fewer areas of fetal blood vessels with more trophoblast cells. In the IUGR group with NeuroEPO, fetal weight increased, although the weight was not similar to the control group. The rest of the placental variables were similar to the control.
Conclusions: The administration of NeuroEPO allowed better development of the fetus and its placenta, possibly due to the cytoprotective effects of this molecule.
Downloads
References
1.Wardinger JE, Ambati S. Placental Insufficiency. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 33085318.
2. Bruin C, Damhuis S, Gordijn S, Ganzevoort W. Evaluation and Management of Suspected Fetal Growth Restriction. Obstetrics and gynecology clinics of North America. 2021. 48(2), 371-385. https://doi.org/10.1016/j.ogc.2021.02.007
3. Groom KM, David AL. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S829-S840. doi:10.1016/j.ajog.2017.11.565
4. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics and the Society for Maternal-Fetal Medicin. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet Gynecol. 2019;133(2):e97-e109. doi:10.1097/AOG.0000000000003070
5. Suresh S, Rajvanshi PK, Noguchi CT. The Many Facets of Erythropoietin Physiologic and Metabolic Response.Front. Physiol. 2020;10:1534. Doi: 10.3389/fphys.2019.01534
6. Ji YQ, Zhang YQ, Li MQ, Du MR, Wei WW, Li DJ. EPO improves the proliferation and inhibits apoptosis of trophoblast and decidual stromal cells through activating STAT-5 and inactivating p38 signal in human early pregnancy. Int J Clin Exp Pathol. 2011;4(8):765-74.
7. Muñoz A, Garcia JC, Pardo Z. GArcia JD Sosa I, et al. Formulaciones nasales de EPORH con bajo contenido de ácido siálico para el tratamiento de enfermedades del sistema nervioso. Patente. Número de publicación internacional WO 2007/009404 A1.2009.
8. Suárez K, Fernández G, Rodríguez Y. Eritropoyetina en la neuroprotección y su entrada al sistema nervioso a través de la cavidad nasal. Investigaciones Medicoquirúrgicas 2020 [Internet]. https://revcimeq.sld.cu/index.php/imq/article/view/588
9. Swanson AM, David AL. Animal models of fetal growth restriction: Considerations for translational medicine. Placenta. 2015 Jun;36(6):623-30. doi: 10.1016/j.placenta.2015.03.003. Epub 2015 Mar 13. PMID: 25819810.
10. McCormick-Ell J, Connell N. Laboratory Safety, Biosecurity, and Responsible Animal Use. ILAR J. 2019;60(1):24-33. doi:10.1093/ilar/ilz012
11. Janot M, Cortes-Dubly ML, Rodriguez S, Huynh-Do U. Bilateral uterine vessel ligation as a model of intrauterine growth restriction in mice. Reprod Biol Endocrinol. 2014 Jul 8;12:62. doi: 10.1186/1477-7827-12-62.
12. Fernández T, Clapés S, Pérez CL, Núñez N, Suárez G, Fernández G. Efecto protector de la NeuroEPO en la reproducción de ratas diabéticas. Rev haban cienc méd [Internet].2022[citado];21(4):e4797. Disponible en: http://www.revhabanera.sld.cu/index.php/rhab/article/view/4797
13. Iñiguez G, Gallardo P, Castro JJ, Gonzalez R, Garcia M, Kakarieka E, San Martin S, et al. Klotho Gene and Protein in Human Placentas According to Birth Weight and Gestational Age. Front. Endocrinol. 2019.9:797.doi: 10.3389/fendo.2018.0079714.
14. Suárez-Román G, Capote-Guitian C, Clapés-Hernández S, Fernández-Romero T, Belo G, Da-Costa M. Reproductive Parameters in a Model of Visceral Obesity. Revista Cubana de Investigaciones Biomédicas [Internet]. 2020 [citado 21 Jun 2023]; 38 (5) Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/534
15. Badawoud MH, Abdel-Aziz G, El-Fark MM, et al. The Effect of Aluminum Exposure on Maternal Health and Fetal Growth in Rats. Cureus. 2022.14(11): e31775. DOI 10.7759/cureus.31775
16. Araujo GG, dos Passos RR, Lunardi RR, Volpato GT, Soares TS, Giachini FR, Lima VV. Maternal and Fetal-Placental Effects of Etanercept Treatment During Rats’ Pregnancy . Front.Physiol. 2022.12:787369. doi: 10.3389/fphys.2021.787369
17. CONEI D, et al. Efectos de la Aspirina en Fetos de Rata con Reducción de la Presión de la Perfusión Uterina. Int. J. Morphol. [online]. 2019;vol.37, n.2, pp.739-743. ISSN 0717-9502. http://dx.doi.org/10.4067/S0717-95022019000200739.
18. Sun C, Groom KM, Oyston C, Chamley LW, Clark AR, James JL. The placenta in fetal growth restriction: What is going wrong?. Placenta. 2020;96:10-18. doi:10.1016/j.placenta.2020.05.003
19. Peilin Zhang. The value of fetal placental ratio and placental efficiency in term human pregnancy and complications. medRxiv 2023;02.17.23286091; doi: https://doi.org/10.1101/2023.02.17.23286091
20. Farah O, Nguyen C, Tekkatte C, Parast MM. Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction. Placenta. 2020;102:4-9. doi:10.1016/j.placenta.2020.02.007
21. Carter AM. Evolution of Placental Hormones: Implications for Animal Models. Front. Endocrinol. 2022,13:891927. doi: 10.3389/fendo.2022.891927.
22. Tunster SJ, Watson ED, Fowden AL, Burton GJ. Placental glycogen stores and fetal growth: insights from genetic mouse models. Reproduction. 2020;159(6):R213-R235. doi:10.1530/REP-20-0007.
23. Saw SN, Tay J, Poh YW, Yang L, Tan WCh, Tan L, et al. Placental Chorionic Arterial Biomechanical Properties During Intrauterine Growth Restriction. Scientific Reports, (2018) 8(1), 16526–. doi:10.1038/s41598-018-34834-5
24. Boss AL, Chamley LW, Brooks AES, James JL. Differences in human placental mesenchymal stromal cells may impair vascular function in FGR. Reproduction. 2021;162(4):319-330. doi:10.1530/REP-21-02.
25. Coniglio MV, Merkis CI, Diaz T, Romanini MC, Turiello MP, Bozzo AA, et al . Efectos de la restricción alimentaria sobre el desarrollo de los vasos sanguíneos placentarios en cabras. InVet [Internet]. 2016 [citado 2023 Jun 21] ; 18( 1 ): 67-75. Disponible en: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1668-34982016000100009&lng=es.
26. Klepper S, Jung S, Dittmann L, et al. Further Evidence of Neuroprotective Effects of Recombinant Human Erythropoietin and Growth Hormone in Hypoxic Brain Injury in Neonatal Mice. Int J Mol Sci. 2022;23(15):8693. doi:10.3390/ijms23158693
27. Wassink G, Davidson JO, Dhillon SK, et al. Partial white and grey matter protection with prolonged infusion of recombinant human erythropoietin after asphyxia in preterm fetal sheep. J Cereb Blood Flow Metab. 2017;37(3):1080-1094. doi:10.1177/0271678X16650455.
28. Dijkstra F, Jozwiak M, De Matteo R, et al. Erythropoietin ameliorates damage to the placenta and fetal liver induced by exposure to lipopolysaccharide. Placenta. 2010;31(4):282-288. doi:10.1016/j.placenta.2009.12.028.