Prognostic model for death from COVID-19
Keywords:
COVID-19, prognostic factors, prognostic models, mortality.Abstract
Introduction: Tools have been used to predict the risk of COVID-19, but none have evaluated their external validity.
Objective: To evaluate the capacity of a model, based on prognostic factors, to predict the risk of dying from COVID-19.
Material and Methods: A cohort analytical study was carried out on patients with COVID-19 at the “Carlos Manuel de Céspedes” provincial general hospital in the Bayamo municipality, province of Granma, from January 1st, 2020 to March 31st, 2023. Confirmed COVID-19 patients were selected. Death was defined as the dependent variable and sociodemographic variables were considered as independent variables for evaluation, including: toxic habits, comorbidity, biomarkers, phenotypes, and prognostic scales.
Results: The Cox proportional regression model demonstrated that the factors associated with the prognosis of death were: classifying phenotype 5 (HR= 6.41; 95% CI= 1.49 to 13.44; p= 0.015); history of arterial hypertension (HR= 2.01; 95% CI= 1.34 to 2.98; p= 0.001); and the RALE scale at 4 or more points (HR= 1.94; 95% CI=1, 47 to 7.90; p= 0.047). The discriminative capacity of the model (C statistic = 0.891) and its calibration were adequate (X2 = 5.384; p = 0.637).
Conclusions: The predictive capacity and calibration of the model were adequate. The model can be used as a clinical and epidemiological surveillance instrument, by staging the risk of dying in the most vulnerable subjects.
Downloads
References
1. Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect [Internet]. 2020 [Citado 24/09/2023]; 81(2):e16-25. Disponible en: http://dx.doi.org/10.1016/j.jinf.2020.04.021
2. Wynants L, van Calster B, Bonten M, Collins GS, Debray T, de Vos M, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ [Internet]. 2020 [Citado 24/09/2023]; 369: m1328. Disponible en: http://dx.doi.org/10.1136/bmj.m1328
3. Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr [Internet]. 2020 [Citado 24/09/2023]; 63(4):119-124. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170784/pdf/cep-2020-00493.pdf
4. González-Tabares R, Acosta-González F, Oliva-Villa E, Rodríguez-Reyes S, Cabeza-Echevarría I. Predictores de mal pronóstico en pacientes con la COVID-19. Revista Cubana de Medicina Militar [Internet]. 2020 [Citado 24/09/2023]; 49 (4) Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/918
5. Luna-Bernal IJ, Justo-Enríquez LM. Factores de riesgo y pronósticos en pacientes atendidos por sospecha de Covid-19. Arch Med Fam [Internet].2021 [Citado 24/09/2023]; 23(3):127-135. Disponible en: https://www.medigraphic.com/pdfs/medfam/amf-2021/amf213f.pdf
6. Li J, He X, Yuan Y, Zhang W, Li X, Zhang Y, et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am J Infect Control [Internet]. 2021 [Citado 24/09/2023];49(1):82-89. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292004/pdf/main.pdf
7. Naranjo-Flores L, Álvarez-Aliaga A, González-Aguilera JC, Suárez-Quesada A, Quesada-Vázquez AJ. Asociación de la comorbilidad y biomarcadores con el riesgo de morir por COVID-19 en pacientes graves. MULTIMED [revista en Internet]. 2023 [Citado 24/09/2023]; 27 Disponible en: https://revmultimed.sld.cu/index.php/mtm/article/view/2911
8. Berenguer J, Borobia AM, Ryan P, Rodríguez-Baño J, Bellón JM, Jarrín, I, et al.Development and validation of a prediction model for 30-day mortality in hospitalised patients with COVID-19: The COVID-19 SEIMC score. Thorax [Internet]. 2021 [Citado 24/09/2023]; 76(9):920-929. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908055/pdf/thoraxjnl-2020-216001.pdf
9. Duca A, Piva S, Focà E, Latronico N, Rizzi M. Calculated Decisions: Brescia-COVID Respiratory Severity Scale (BCRSS)/Algorithm. Emergency Medicine Practice [Internet]. 2020 [Citado 24/09/2023]; 22(5 Suppl): CD1-CD2. Disponible en: https://www.ebmedicine.net/topics/infectious-disease/COVID-19/Calculators
10. Haimovich AD, Ravindra NG, Stoytchev S, Young HP, Wilson FP, van Dijk D, Schulz WL, Taylor RA. Development and Validation of the Quick COVID-19 Severity Index: A Prognostic Tool for Early Clinical Decompensation. Ann Emerg Med [Internet]. 2020 [Citado 24/09/2023];76(4):442-453. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC73733004/pdf/main.pdf
11. Osejo-Betancourt M, Pardo-Diaz YP, García-Camargo JP, Carrillo-Bayona J, Ortiz-Ruiz G. Puntaje radiográfico de evaluación del edema pulmonar (RALE) y su asociación con desenlaces clínicos en el síndrome de dificultad respiratoria aguda en Colombia. Acta Colombiana de Cuidado Intensivo [Internet]. 2022 [Citado 24/09/2023]; 22(4):299-307. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746788/pdf/main.pdf
12. Mazumdar M, Glassman JR. Categorizing a prognostic variable: review of methods, code for easy implementation and applications to decision-making about cancer treatments. Stat Med. 2000 Jan 15;19(1):113-32. doi: 10.1002/(sici)1097-0258(20000115)19:1<113::aid-sim245>3.0.co;2-o. PMID: 10623917.
13. Águila-Gordo D, Martínez-Del Río J, Mazoteras-Muñoz V, Negreira-Caamaño M,Nieto-Sandoval M, de la Sierra P, Piqueras-Flores J. Mortalidad y factores pronósticos asociados en pacientes ancianos y muy ancianos hospitalizados con infección respiratoria COVID-19. Rev Esp Geriatr Gerontol [Internet]. 2021[Citado 24/09/2023]; 56(5): 259-67. Disponible en: https://www.elsevier.es/es-revista-revista-espanola-geriatria-gerontologia-124-pdf-S0211139X20301748
14. Giralt-Herrera A, Rojas-Velázquez J, Leiva-Enríquez J. Relación entre COVID-19 e hipertensión arterial. Revista Habanera de Ciencias Médicas [Internet]. 2020 [Citado 24/09/2023]; 19 (2) Disponible en: https://revhabanera.sld.cu/index.php/rhab/article/view/3246
15. Zuin M, Rigatelli G, Zuliani G, Rigatelli A, Mazza A, Roncon L. Arterial hypertension and risk of death in patients with COVID-19 infection: Systematic review and meta-analysis. J Infect [Internet]. 2020 [Citado 24/09/2023]; 81(1):e84-e86. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151373/pdf/main.pdf
16. Halvatsiotis P, Kotanidou A, Tzannis K, Jahaj E, Magira E, Theodorakopoulou M, et al. Demographic and clinical features of critically ill patients with COVID-19 in Greece: The burden of diabetes and obesity. Diabetes Res Clin Pract [Internet]. 2020 [Citado 24/09/2023];; 166: 108331. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366091/pdf/main.pdf
17. Yang JK, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, Sun GZ, Yang GR, Zhang XL, Wang L, Xu X, Xu XP, Chan JC. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006 Jun;23(6):623-8. doi: 10.1111/j.1464-5491.2006.01861.x. PMID: 16759303.
18. Escalona-González S, González-Milán Z, Borrero-Celles O, Ricardo-Paez B. Enfermedad renal crónica agudizada como causa de mortalidad en paciente con COVID-19. Revista Cubana de Medicina [Internet]. 2023 [Citado 24/09/2023]; 62 (3) Disponible en: https://revmedicina.sld.cu/index.php/med/article/view/3167
19. Leung C. Risk factors for predicting mortality in elderly patients with COVID-19: A review of clinical data in China. Mech Ageing Dev [Internet]. 2020 [Citado 24/09/2023]; 188:111255. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184979/pdf/main.pdf
20. Tomidokoro D, Asai Y, Hayakawa K , Kutsuna S , Terada M, Sugiura W, et al. Comparison of the clinical characteristics and outcomes of Japanese patients with COVID-19 treated in primary, secondary, and tertiary care facilities. J Infect Chemother [Internet]. 2023 [Citado 24/09/2023]; 29 (3):302-08. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745966/pdf/main.pdf
21. Bertini CD, Khawaja F, Sheshadri A, Khawaja F, Sheshadri. Coronavirus Disease-2019 in the Immunocompromised Host. Clin Chest Med [Internet]. 2023 [Citado 24/09/2023];44:395-406 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678818/pdf/main.pdf
22. Obregón-Santos Á, Adolfo-Prohias J, Pérez-Barreda A, Vila-García E. Insuficiencia cardíaca aguda en época de COVID-19. Revista Cubana de Cardiología y Cirugía Cardiovascular [Internet]. 2020 [Citado 24/09/2023]; 26 (2) Disponible en: https://revcardiologia.sld.cu/index.php/revcardiologia/article/view/995
23. Salinas-Botrán A, Sanz-Cánovas J, Pérez-Somarriba J, Pérez-Belmonte LM, Cobos-Palacios L, Rubio-Rivas M, et al. Características clínicas y factores de riesgo de mortalidad al ingreso en pacientes con insuficiencia cardíaca hospitalizados por COVID-19 en España. Rev Clin Esp [Internet]. 2022 [Citado 24/09/2023]; 222(5): 255-65. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285252/pdf/main.pdf
24. Murrieta-Peralta E, Chischistz-Condey AP, Holguin-Andrade KI, Cadena-Fernández A, Cervantes-Flores HA, Ramírez-Landero J, et al. Correlación del índice de severidad por tomografía y pronóstico de pacientes con neumonía por COVID-19. Neumol Cir Torax [Internet]. 2021[Citado 24/09/2023]; 80 (1): 19-28. Disponible en: https://www.scielo.org.mx/pdf/nct/v80n1/0028-3746-nct-80-01-19.pdf
25. Barrientos Ramirez, RC. Uso de la escala de evaluación radiológica de edema pulmonar (Rale) en pacientes con covid-19. Revista Diversidad Científica [Internet]. 2021[Citado 24/09/2023]; 1(1): 53-60. Disponible en: https://doi.org/10.36314/diversidad.v1i1.7.
26. Zhang R, Ouyang H, Fu L, Wang S, Han J, Huang K, Jia M, Song Q, Fu Z. CT features of SARS-CoV-2 pneumonia according to clinical presentation: a retrospective analysis of 120 consecutive patients from Wuhan city. Eur Radiol [Internet]. 2020 [Citado 24/09/2023];30(8):4417-4426. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150608/pdf/330_2020_Article_6854.pdf
27. Yang Y, Xie J, Guo F, Longhini F, Gao Z, Huang Y, Qiu H. Combination of C-reactive protein, procalcitonin and sepsis-related organ failure score for the diagnosis of sepsis in critical patients. Ann Intensive Care [Internet]. 2016 [Citado 24/09/2023]; 6(1):51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901212/pdf/13613_2016_Article_153.pdf
28. Galicia García Cesar, Santana Hernández Gabriela Patricia, Vega Sánchez Ángel Emmanuel. Asociación de ferritina con deterioro ventilatorio y mortalidad debido a COVID-19 en terapia intensiva. Med. crít. (Col. Mex. Med. Crít.) [revista en la Internet]. 2021 [Citado 24/09/2023];35( 3 ): 121-129. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-89092021000300121&lng=es.
29. Lapić I, Rogić D, Plebani M. Erythrocytesedimentation rate is associated with severe coronavirus disease 2019 (COVID-19): a pooled analysis. Clin Chem Lab Med [Internet]. 2020 [Citado 24/09/2023]; 58(7): [aprox. 2p.]. Disponible en: https://www.degruyter.com/view/journals/cclm/ahead-of-print/article-10.1515-cclm-2020-0620/article-10.1515-cclm-2020-0620.xml.
30. Yan L, Zhang H, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell [Internet]. 2020 [Citado 24/09/2023]; 2:283-8. Disponible en: http://dx.doi.org/10.1038/s42256-020-0180-7.