Identification in silico of potentially inhibitive molecules of CDK5, protein related with the Alzheimer´s disease
Abstract
Introduction: The illness of Alzheimer exhibits a neurodegenerative and irreversible commitment. Today, numerous investigations promote the inhibition of some kinases to the treatment, of special mention the CDK5. Objective: Identification of new molecules witch are able to interact with the cicline dependent kinase protein 5, CDK5, inhibiting their function. Material and Methods: it was carried out a study in silico, for that 911 pubchem molecules were extracted, and by means of AutoDock Vina molecular joining were made with the protein CDK5 extracted from the Protein Data Bank and with a well-known inhibitor for the protein. It was also carried out an inverse joining for the identification of other possible molecular targets with the best selected ligands. Results: With the obtained results five molecules were identified with values of likeness among -11,6 until -17,7 Kcal/mol that joins in the active site of the protein, in the same form that makes it the well-known inhibitor of the CDK5, and interact with the residuals cysteine 83 and glutamine 81. Conclusions: The identified molecules can interact with the CDK5 at level of their active place, for what you/they could act as inhibitors of this quinasa. This opens a future therapeutic window in the treatment of the illness of Alzheimer.Keywords: Molecular joining, active site, Alzheimer, CDK5, in silico.
Downloads
References
1 Christiane Reitz, Richard Mayeux. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology [Internet]. 2014 [citado …….]; 88, 640–651. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24398425
2 Rommy Bernhardi. Neurobiological mechanisms of Alzheimer’s disease. Rev Chil Neuro-Psiquiatr [Internet].2005 [citado ……]; 43(2):123-132. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92272005000200005
3 Zamolodchikov D, Strickland S. A possible new role for Aβ in vascular and inflammatory dysfunction in Alzheimer’s disease. Thrombosis Research [Internet]. 2016 [citado …..]; 141S2 (2016) S59–S61. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27207427
4 Óscar López. Pharmacological therapy of Alzheimer’s disease and other dementias. Arch Med Interna [Internet].2015 [citado …..]; 37(1):61-67. Disponible en: http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S1688-423X2015000200003
5 Sharma HS, Muresanu DF, Sharma A et al. Alzheimer’s disease: cerebrolysin and nanotechnology as a therapeutic strategy. Neurodegener Dis Manag.[Internet]; 2016 [citado …] ;6(6):453-456. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27827552
6 Marisol Herrera-Rivero, María Elena Hernández-Aguilar, Jorge Manzo, Gonzalo Emiliano Aranda-Abreu. Enfermedad de Alzheimer: inmunidad y diagnóstico. Rev Neurol [Internet]. 2010 [citado …..]; 51 (3): 153-164. Disponible en: http://www.neurologia.com/pdf/Web/5103/be030153.pdf
7 Nerlis PÁJARO-CASTRO, María C. FLECHAS, Raquel OCAZIONEZ, Elena STASHENKO, Jesús OLIVERO-VERBEL. Potential interaction of components from essential oils with dengue virus proteins. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas [Internet]. 2015 [citado …..];14 (3): 141 – 155. Disponible en: http://www.redalyc.org/articulo.oa?id=85638535001
8 Gao-keng Xiao, Hao Gao, Xin-sheng Yao. http://nps.jnu.edu.cn
9 Jae Suk Ahn, Mala L. Radhakrishnan, Marina Mapelli, Sungwoon Choi, Bruce Tidor, et al. Defining Cdk5 Ligand Chemical Space with Small Molecule Inhibitors of Tau phosphorylation. Chemistry & Biology [Internet]. 2005 [citado]; Vol. 12, 811–823. Disponible en: http://www.cell.com/ccbio/abstract/S1074-5521(05)00157-2
10 Luc Demange, Fatma Nait Abdellah, Olivier Lozach, Yoan Ferandin, Nohad Gresh, et al. Potent inhibitors of CDK5 derived from roscovitine: Synthesis, biological evaluation and molecular modelling. Bioorg Med Chem Lett. [Internet]. 2013 [citado …]; 23, 125–131. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23218601
11 Chatterjee A, Cutler SJ, Doerksen RJ, Khan IA, Williamson JS. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Bioorg Med Chem [Internet]. 2014 [citado …]; 22(22):6409-21. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/?term=Discovery+of+thienoquinolone+derivatives+as+selective+and+ATP+non-competitive+CDK5%2Fp25+inhibitors+by+structure-based+virtual+screening.
12 Dong K, Wang X, Yang X, Zhu X. Binding Mechanism of CDK5 with Roscovitine Derivatives Based on Molecular Dynamics Simulations and MM/PBSA Methods. J Mol Graph Model. [Innternet]. 2016 [citado …]; 68:57-67. Disponible en: ww.ncbi.nlm.nih.gov/pubmed/?term=Binding+Mechanism+of+CDK5+with+Roscovitine+Derivatives+Based+on+Molecular+Dynamics+Simulations+and+MM%2FPBSA+Methods.
13 Shrestha S, Natarajan S, Park JH, Lee DY, Cho JG, Kim GS, et al. Potential neuroprotective flavonoid-based inhibitors of CDK5/p25 from Rhus parviflora. Bioorg Med Chem Lett. [Internet]. 2013 [citado … ]; 23(18):5150-4. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/?term=Potential+neuroprotective+flavonoid-based+inhibitors+of+CDK5%2Fp25+from+Rhus+parviflora.
14 SINTESIS DE DERIVADOS DE 1-BENCILISOQUINOLINAS COMO POSIBLES INHIBIDORES DE CDK-5 Y ESTUDIO DE LAS INTERACCIONES EN EL SITIO DE UNIÓN DE ATP. (TESIS).
15 Nishikawa T, Takahashi T, Nakamori M, Yamazaki Y, Kurashige T, et al. Phosphatidylinositol-4,5-bisphosphate is enriched in granulovacuolar degeneration bodies and neurofibrillary tangles. Neuropathol Appl Neurobiol. [Internet]. 2014 [citado …]; 40(4):489-501. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/?term=Phosphatidylinositol-4%2C5-bisphosphate+is+enriched+in+granulovacuolar+degeneration+bodies+and+neurofibrillary+tangles.
16 John J. Haddad. Mitogen-activated protein kinases and the evolution of Alzheimer’s: a revolutionary neurogenetic axis for therapeutic intervention?. Prog Neurobiol. [Internet]. 2004 [citado …]; 73(5):359-77. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/?term=Mitogen-activated+protein+kinases+and+the+evolution+of+Alzheimer%E2%80%99s%3A+a+revolutionary+neurogenetic+axis+for+therapeutic+intervention%3F%2C
17 Alam J, Scheper W. Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain. Autophagy. [Internet]. 2016 [citado …]; 12(12):2516-2520. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/?term=Targeting+neuronal+MAPK14%2Fp38%CE%B1+activity+to+modulate+autophagy+in+the+Alzheimer+disease+brain
18 Kelly R. Bales, Niels Plath, Niels Svenstrup, and Frank S. Menniti. Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer’s Disease. Top Med Chem [Internet]. 2010 [Citado ..]; 6: 57–90. Disponible en: http://link.springer.com/chapter/10.1007%2F7355_2010_8