Efecto hepatoprotector, antioxidante y anticancerígeno de la espirulina
Resumen
Introducción: la espirulina es un alga que se emplea como un suplemento alimenticio de gran importancia, consumido desde la antigüedad, actualmente son conocidas sus propiedades como hepatoprotector, antioxidante, anticancerígeno, entre otros, que brindan una mejor salud y por ende calidad de vida. Actualmente las enfermedades hepáticas y el cáncer tienen prevalencia convirtiéndose en un gran problema sanitario que aqueja a la humanidad. En este sentido el presente trabajo halla su importancia.
Objetivo: realizar una revisión sobre la actividad farmacológica de las diferentes especies de espirulina relacionadas con el efecto hepatoprotector, antioxidante y anticancerígeno.
Material y Métodos: se implementó una búsqueda exhaustiva en base de datos en línea como Pubmed, Scopus, Medline y Ebsco, se incluyeron solo trabajos originales completos de corte experimental y clínico publicados en el periodo 2000 a 2019.
Desarrollo: se encontraron 2064 artículos relacionados de los cuales 58 cumplían los requisitos exigidos en el presente trabajo, fueron trabajados por análisis documental y agrupación en clusters atendiendo a sus propiedades farmacognósicas.
Conclusiones: los artículos revisados refieren el gran potencial que tiene la espirulina como agente hepatoprotector, antiinflamatorio, antioxidante, citotóxico, antimutagénico, apoptótico y anticancerígeno soportado en su gran variedad de contenido nutracéutico.
Palabras clave
Referencias
Mazokopakis EE, Papadomanolaki MG, Fousteris AA, Kotsiris DA, Lampadakis IM, Ganotakis ES. The hepatoprotective and hypolipidemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population with non-alcoholic fatty liver disease: A prospective pilot study. Ann Gastroenterol [Internet]. 2014 [Citado 10/06/2019];27(4):387-94. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188938/
Deng R, Chow TJ. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae spirulina. Cardiovas Ther [Internet]. 2010 [Citado 20/03/2020]; 28(4):e33-e55. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907180/
Matondo FK, Takaisi K, Nkuadiolandu AB, Lukusa AK, Aloni MN. Spirulina supplements improved the nutritional status of undernourished children quickly and significantly: experience from Kisantu, the Democratic Republic of the Congo. Int J Pediatr [Internet]. 2016 [Citado 20/03/2020];2016:1296414. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061973/
Ferreira Hermosillo A, Torres Duran P V, Juarez Oropeza MA. Hepatoprotective effects of Spirulina maxima in patients with non-alcoholic fatty liver disease: A case series. J Med Case Rep [Internet]. 2010 [Citado 20/03/2020];4:103. Disponible en: https://jmedicalcasereports.biomedcentral.com/articles/10.1186/1752-1947-4-103
Gutiérrez Rebolledo GA, Galar Martínez M, García Rodríguez RV, Chamorro Cevallos GA, Hernández Reyes AG, Martínez Galero E. Antioxidant Effect of Spirulina (Arthrospira) maxima on chronic inflammation induced by Freund’s complete adjuvant in rats. J Med Food [Internet]. 2015 [Citado 20/03/2020]; 18(8):865-71. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523079/
Lin J, Lu A. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev [Internet]. 1997 [Citado 20/03/2020];49:403-49. Disponible en: http://pharmrev.aspetjournals.org/content/49/4/403.long
Madrigal Santillán E, Madrigal Bujaidar E, Álvarez González I, Sumaya Martínez MT, Gutiérrez Salinas J, Bautista M, et al. Review of natural products with hepatoprotective effects. World J Gastroenterol [Internet]. 2014 [Citado 20/03/2020];20(40):14787-804. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209543/
Lahon K, Das S. Hepatoprotective activity of Ocimum sanctum alcoholic leaf extract against paracetamol-induced liver damage in albino rats. Pharmacognosy Res [Internet]. 2011 [Citado 20/03/2020];3(1):13-8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119265/
Vargas Mendoza N, Madrigal Santillán E, Morales González Á, Esquivel Soto J, Esquivel Chirino C, García Luna E, et al. Hepatoprotective effect of silymarin. World J Hepatol [Internet]. 2014 [Citado 20/03/2020];6(3):144-9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959115/
Kim MN, Kim BK, Han KH. Hepatocellular carcinoma in patients with chronic hepatitis C virus infection in the Asia-Pacific region. J Gastroenterol [Internet]. 2013 [Citado 20/03/2020];48(6):681-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23463401
Tenkerian C, El Sibai M, Daher C, Mroueh M. Hepatoprotective, antioxidant, and anticancer effects of the Tragopogon porrifolius methanolic extract. Evid Based Complement Altern Med [Internet]. 2015 [Citado 20/03/2020];2015:161720. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324983/
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev [Internet]. 2010 [Citado 20/03/2020];4(8):118-26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249911/
Pham Huy LA, He H, Pham Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci [Internet]. 2008 [Citado 20/03/2020];4(2):89-96. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614697/
Thyagarajan A, Sahu RP. Potential contributions of antioxidants to cancer therapy: immunomodulation and radiosensitization. Integr Cancer Ther [Internet]. 2018 [Citado 20/03/2020];17(2):210-6. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28627256
Singh K, Bhori M, Kasu YA, Bhat G, Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurity. Saudi Pharm J [Internet]. 2018 [Citado 20/03/2020]; 26(2):177-90. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/30166914
Almasi F, Khazaei M, Chehrei S, Ghanbari A. Efectos hepatoprotectores del extracto hidro-alcohólico de tribulus terrestris en ratas con inducción de hígados grasos no alcólicos. Int J Morphol [Internet]. 2017[Citado 20/03/2020];35(1):345-50. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_abstract&pid=S0717-95022017000100054&lng=es&nrm=iso
Coué M, Tesse A, Falewée J, Aguesse A, Croyal M, Fizanne L, et al. Spirulina liquid extract protects against fibrosis related to non-alcoholic steatohepatitis and increases ursodeoxycholic acid. Nutrients [Internet]. 2019 [Citado 20/10/2020]; 11(1):194. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357008/
Oriquat G. Therapeutic effects of Spirulina against experimentally-induced nonalcoholic fatty liver in rats may involve miR-21, -34a and -122. Meta Gene [Internet]. 2018 [Citado 05/04/2019];18:115-21. Disponible en: https://www.elsevier.com/books/liver-pathophysiology/muriel/978-0-12-804274-8
Khafaga AF, El Sayed YS. Spirulina ameliorates methotrexate hepatotoxicity via antioxidant, immune stimulation, and proinflammatory cytokines and apoptotic proteins modulation. Life Sci [Internet]. 2018 [Citado 26/03/2019];196:9-17. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29339102
Al Qahtani WH, Binobead MA. Anti-inflammatory, antioxidant and antihepatotoxic effects of Spirulina platensis against D-galactosamine induced hepatotoxicity in rats. Saudi J Biol Sci [Internet]. 2019 [Citado 20/03/2019];26(4):647-52. Disponible en: https://www.sciencedirect.com/science/article/pii/S1319562X18300123
Vos T, Barber RM, Bell B, Bertozzi Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet [Internet]. 2015 [Citado 04/04/2019];386(9995):743-800. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26063472
Abdel Daim M, El Bialy BE, Rahman HGA, Radi AM, Hefny HA, Hassan AM. Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: Biochemical and histopathological studies. Biomed Pharmacother [Internet]. 2016 [Citado 04/04/2019];77:79-85. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/26796269
MedlinePlus: Información de Salud para usted [Internet]. Bethesda: National Library of Medicine; 2018 [Citado 26/04/2018]. Disponible en: https://medlineplus.gov/
Gdara N Ben, Belgacem A, Khemiri I, Mannai S, Bitri L. Protective effects of phycocyanin on ischemia/reperfusion liver injuries. Biomed Pharmacother [Internet]. 2018 [Citado 26/04/2019];102:196-202. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29558716
Moura LP, Puga GM, Beck WR, Teixeira IP, Ghezzi AC, Silva GA, et al. Exercise and spirulina control non-alcoholic hepatic steatosis and lipid profile in diabetic Wistar rats. Lipids Health Dis [Internet]. 2011 [Citado 26/04/2019]; 10(1):77. Disponible en: http://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-10-77
Aissaoui O, Amiali M, Bouzid N, Belkacemi K, Bitam A. Effect of Spirulina platensis ingestion on the abnormal biochemical and oxidative stress parameters in the pancreas and liver of alloxan-induced diabetic rats. Pharm Biol [Internet]. 2017 [Citado 26/04/2019];55(1):1304-12. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/28274159
Rodríguez Hernández A, Blé Castillo JL, Juárez Oropeza MA, Díaz Zagoya JC. Spirulina maxima prevents fatty liver formation in CD-1 male and female mice with experimental diabetes. Life Sci [Internet]. 2001[Citado 26/04/2019];69(9):1029-37. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0024320501011857
Sayed AEDH, El Sayed YS, El Far AH. Hepatoprotective efficacy of Spirulina platensis against lead-induced oxidative stress and genotoxicity in catfish; Clarias gariepinus. Ecotoxicol Environ Saf [Internet]. 2017 [Citado 26/04/2019];143:344-50. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/2855
El Tantawy WH. Antioxidant effects of Spirulina supplement against lead acetate-induced hepatic injury in rats. J Tradit Complement Med [Internet]. 2016 [Citado 26/04/2019];6(4):327-31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067858/
Liu J, Zhang QY, Yu LM, Liu B, Li MY, Zhu RZ. Phycocyanobilin accelerates liver regeneration and reduces mortality rate in carbon tetrachloride-induced liver injury mice. World J Gastroenterol [Internet]. 2015 [Citado 11/06/2019]; 21(18):5465-72. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25987768
Kepekçi RA, Polat S, Çelik A, Bayat N, Saygideger SD. Protective effect of Spirulina platensis enriched in phenolic compounds against hepatotoxicity induced by CCl4. Food Chem [Internet]. 2013 [Citado 04/06/2019];141(3):1972-9. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23870917
Viswanadha VP, Sivan S, Rajendra Shenoi R. Protective effect of Spirulina against 4-nitroquinoline-1-oxide induced toxicity. Mol Biol Rep [Internet]. 2011 [Citado 26/04/2019];38(1):309-17. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/20352348
Sarumathi A, Sethupathy S, Saravanan N. The protective efficacy of spirulina against bacterial endotoxin potentiated alcoholic liver disease. J Funct Foods [Internet]. 2014 [Citado 26/06/2019];9(1):254-63. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1756464614001595
Dong L, Li Y, Wang P, Feng Z, Ding N. Cleaner production of monosodium glutamate in China. J Clean Prod [Internet]. 2018 [Citado 26/06/2019];190:452-61. Disponible en: https://www.sciencedirect.com/science/article/pii/S095965261831117X
Fujimoto M, Tsuneyama K, Fujimoto T, Selmi C, Gershwin ME, Shimada Y. Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome. Dig Liver Dis [Internet]. 2012 [Citado 26/04/2019];44(9):767-74. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22444524
Yakoot M, Salem A. Spirulina platensis versus silymarin in the treatment of chronic hepatitis C virus infection. A pilot randomized, comparative clinical trial. BMC Gastroenterol [Internet]. 2012 [Citado 26/04/2019];12:32. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22497849
Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M. Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology [Internet]. 2005 [Citado 26/04/2019]; 48(6):903-17. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15829260
Patil J, Matte A, Mallard C, Sandberg M. Spirulina diet to lactating mothers protects the antioxidant system and reduces inflammation in post-natal brain after systemic inflammation. Nutr Neurosci [Internet]. 2018 [Citado 26/08/2019]; 21(1):59-69. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27571388
Valko M, Morris H, Cronin M. Metals, toxicity and oxidative stress. Curr Med Chem [Internet]. 2005 [Citado 26/08/2019];12(10):1161-208. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15892631
Mohanty D, Samanta L. Dietary supplementation of Spirulina ameliorates iron-induced oxidative stress in Indian knife fish Notopterus Notopterus. Environ Toxicol Pharmacol [Internet]. 2018 [Citado 26/04/2019];61:71-8. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29852372
Sommella E, Conte GM, Salviati E, Pepe G, Bertamino A, Ostacolo C, et al. Fast profiling of natural pigments in different spirulina (arthrospira platensis) dietary supplements by DI-FT-ICR and evaluation of their antioxidant potential by pre-column DPPH-UHPLC assay. Molecules [Internet]. 2018 [Citado 26/04/2019]; 23(5):[Aprox. 2 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15892631
Rao A V, Rao LG. Carotenoids and human health. Pharmacol Res [Internet]. 2007 [Citado 26/04/2019];55(3):207-16 Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/17349800
Park WS, Kim HJ, Li M, Lim DH, Kim J, Kwak SS, et al. Two classes of pigments, carotenoids and c-phycocyanin, in spirulina powder and their antioxidant activities. Molecules [Internet]. 2018 [Citado 26/04/2019];23(8):[Aprox. 2 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/30126131
Wu XJ, Yang H, Chen YT, Li PP. Biosynthesis of fluorescent β subunits of c-phycocyanin from spirulina subsalsa in escherichia coli, and their antioxidant properties. Molecules [Internet]. 2018 [Citado 26/04/2019];23(6):[Aprox. 2 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29882804
Hossain MF, Ratnayake RR, Meerajini K, Wasantha Kumara KL. Antioxidant properties in some selected cyanobacteria isolated from fresh water bodies of Sri Lanka. Food Sci Nutr [Internet]. 2016 [Citado 26/04/2019];4(5):753-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27625779
Kurd F, Samavati V. Water soluble polysaccharides from Spirulina platensis: Extraction and in vitro anti-cancer activity. Int J Biol Macromol [Internet]. 2015 [Citado 26/05/2019];74:498-506. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25583023
Ravi M, Tentu S, Baskar G, Rohan Prasad S, Raghavan S, Jayaprakash P, et al. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer [Internet]. 2015 [Citado 26/05/2019];15(1):768. Disponible en: https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1784-x
Jiang L, Wang Y, Liu G, Liu H, Zhu F, Ji H, et al. C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells. Cancer Cell Int [Internet]. 2018 [Citado 26/04/2019];18:1. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29416441
Okuyama H, Tominaga A, Fukuoka S, Taguchi T, Kusumoto Y, Ono S. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ. Oncol Rep [Internet]. 2017 [Citado 26/06/2019];37(2):684-94. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28075473
Liu Z, Fu X, Huang W, Li C, Wang X, Huang B. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours. J Photochem Photobiol B Biol [Internet]. 2018 [Citado 25/05/2019];180:89-97. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29413706
Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, et al. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomedicine [Internet]. 2012 [Citado 15/06/2019]; 7:835-44. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22359460
Hao S, Yan Y, Li S, Zhao L, Zhang C, Liu L, et al. The in vitro anti-tumor activity of phycocyanin against non-small cell lung cancer cells. Mar Drugs [Internet]. 2018 [25/07/2019];16(6):[Aprox. 2 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025048/
Ueland PM, Holm PI, Hustad S. Betaine: A key modulator of one-carbon metabolism and homocysteine status. Clin Chem Lab Med [Internet]. 2005 [Citado 14/09/2019];43(10):1069-75. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16197300
Bingula R, Dupuis C, Pichon C, Berthon JY, Filaire M, Pigeon L, et al. Study of the Effects of betaine and/or C-Phycocyanin on the growth of lung cancer A549 cells in vitro and in vivo. J Oncol [Internet]. 2016 [Citado 15/10/2019];2016:11. Disponible en: https://www.hindawi.com/journals/jo/2016/8162952/
Czerwonka A, Kaławaj K, Sławińska Brych A, Lemieszek MK, Bartnik M, Wojtanowski KK, et al. Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomed Pharmacother [Internet]. 2018 [Citado 15/06/2019];106:292-302. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29966973
Liao G, Gao B, Gao Y, Yang X, Cheng X, Ou Y. Phycocyanin inhibits tumorigenic potential of pancreatic cancer cells: role of apoptosis and autophagy. Sci Rep [Internet]. 2016 [Citado 15/06/2019];6(1):1-12. Disponible en: https://www.nature.com/articles/srep34564
Smieszek A, Giezek E, Chrapiec M, Murat M, Mucha A, Michalak I, et al. The influence of Spirulina platensis filtrates on caco-2 proliferative activity and expression of apoptosis-related microRNAs and mRNA. Mar Drugs [Internet]. 2017 [Citado 15/10/2019];15(3):[Aprox. 2 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28272349
Khare S, Chaudhary K, Bissonnette M, Carroll R. Aberrant crypt foci in colon cancer epidemiology. Methods Mol Biol [Internet]. 2009 [Citado 15/10/2019]; 472:373-86. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19107443
Martínez Palma NY, Dávila Ortiz G, Jiménez Martínez C, Madrigal Bujaidar E, Álvarez González I. Chemopreventive and antioxidant effect of polyphenol free Spirulina maxima and its hydrolyzed protein content: Investigation on azoxymethane treated mice. Pharmacogn Mag [Internet]. 2017 [Citado 15/10/2019];13(50):S164-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28808375
Álvarez González I, Islas Islas V, Chamorro Cevallos G, Barrios JP, Paniagua N, Vásquez Garzón VR, et al. Inhibitory effect of Spirulina maxima on the azoxymethaneinduced aberrant colon crypts and oxidative damage in mice. Pharmacogn Mag [Internet]. 2015 [Citado 15/08/2019];11(44):619-24. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27013804
Chamorro Cevallos G, Garduño Siciliano L, Martínez Galero E, Mojica Villegas A, Pages N, Gutiérrez Salmeán G. The protective effect of dietary arthrospira (spirulina) maxima against mutagenicity induced by Benzo[alpha]pyrene in mice. J Med Food [Internet]. 2014 [Citado 25/10/2019];17(5):527-34. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24787733
Kawanishi Y, Tominaga A, Okuyama H, Fukuoka S, Taguchi T, Kusumoto Y, et al. Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV-M glioma cells through Toll-like receptor 4. Microbiol Immunol [Internet]. 2013 [Citado 25/10/2019];57(1):63-73. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23134155
Choi WY, Kang DH, Lee HY. Enhancement of immune activation activities of spirulina maxima grown in deep-sea water. Int J Mol Sci [Internet]. 2013 [Citado 15/05/2019];14(6):12205-21. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23743830
Barakat W, Elshazly SM, Mahmoud A. Spirulina platensis lacks antitumor effect against solid Ehrlich carcinoma in female mice. Pharmacol Sci [Internet]. 2015 [Citado 15/04/2019];132873:8. Disponible en: https://www.hindawi.com/journals/aps/2015/132873/
Añadir comentario
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.